

Antibody–Drug Conjugates in Development for Breast Cancer

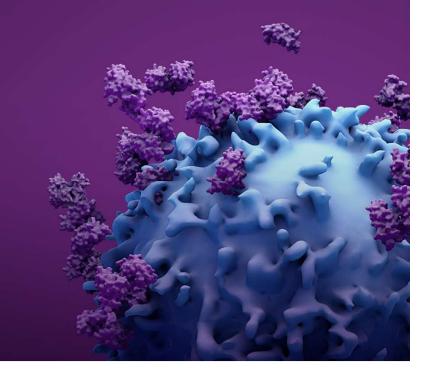
Sara A. Hurvitz, MD, FACP Professor of Medicine David Geffen School of Medicine, UCLA Los Angeles, CA

William J. Gradishar, MD, FASCO, FACP Betsy Bramsen Professor of Breast Oncology & Professor of Medicine Northwestern University Feinberg School of Medicine Chicago, IL

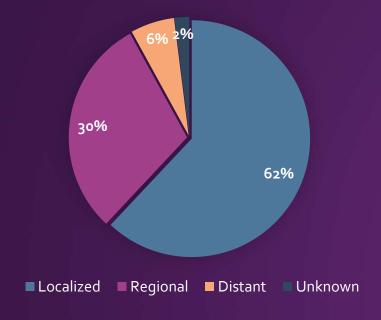
Learning Objectives

Review 3 FDA-approved ADCs and ADCs in clinical development for breast cancer

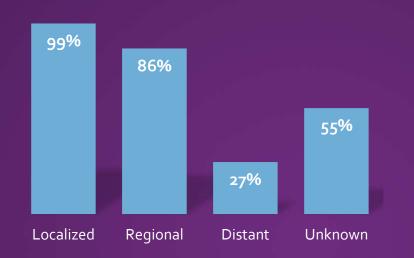
Analyze the unmet need in patients with breast cancer


Discuss their mechanisms of action

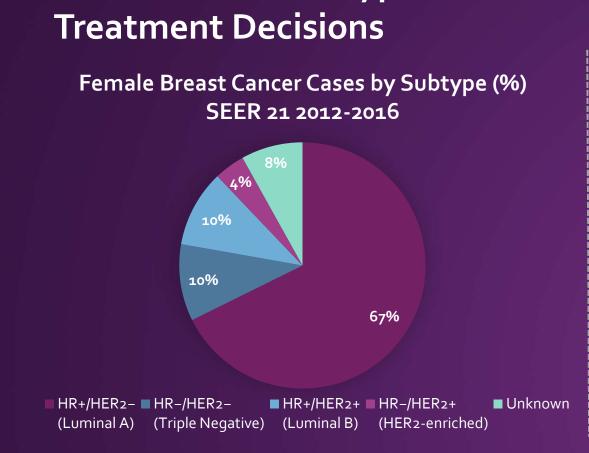
Analyze available clinical data and discuss ongoing clinical trials


ADC, antibody-drug conjugate; BC, breast cancer; FDA, US Food and Drug Administration.

FDA-Approved ADCs in Breast Cancer



The Majority of Breast Cancer Cases Are Diagnosed in Early Stages, When the Disease Is Curable



5-Year Relative Survival

Practical Recommendations in Immuno & Molecular Oncology ADC Summit

Breast Cancer Stage Distribution of SEER Incidence Cases, 2008-2017. URL: https://seer.cancer.gov/explorer/application.php?site=55&data_type=1&graph_type=4&compareBy=sex&chk_sex_3=3&chk_race_1=1&chk_age_range_1=1&advopt_precision=1&showDataFor=race_1_and_age_range_1. Accessed: November 8, 2020.

Breast Cancer Subtypes Guide

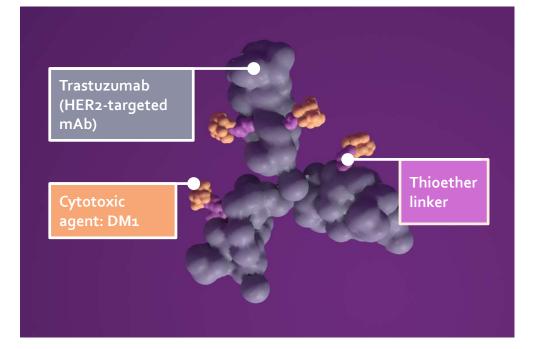
Rate of New Breast Cases per 100,000 Women, SEER 21 2012-2016

Subtype	New Cases
HR+/HER2-	85.8
HR-/HER2-	13.0
HR+/HER2+	12.9
HR-/HER2+	5.4
Unknown	10.4
Total	127.5

HER, human epidermal growth factor receptor; HR, hormone receptor. Cancer Stat Facts: Female Breast Cancer Subtypes. URL: https://seer.cancer.gov/statfacts/html/breast-subtypes.html.

FDA-Approved ADCs in Breast Cancer (BC)

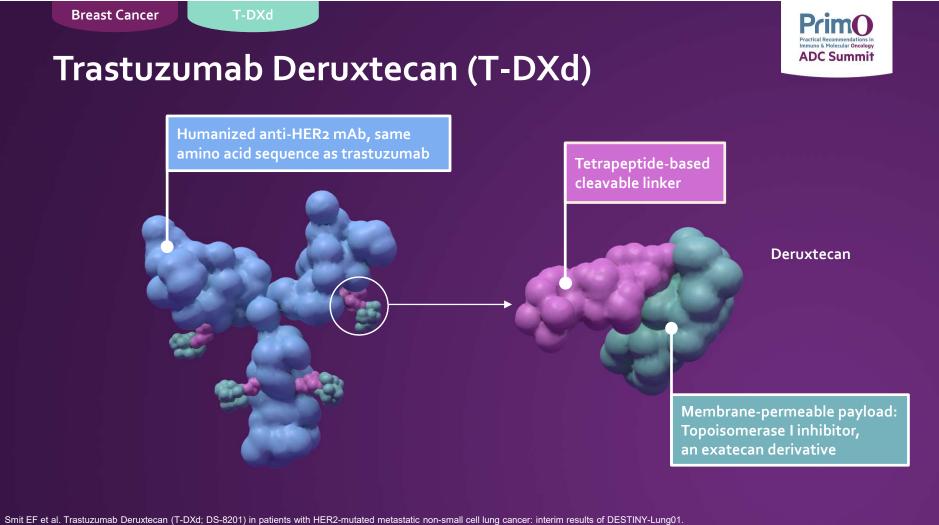
Drug name	Target	Indication	FDA Approval
KADCYLA® (trastuzumab emtansine) ¹	HER2	Early Breast Cancer: as a single agent, is indicated for the adjuvant treatment of patients with HER2-positive early breast cancer who have residual invasive disease after neoadjuvant taxane and trastuzumab-based treatment. Metastatic Breast Cancer: as a single agent, is indicated for the treatment of patients with HER2-positive, metastatic breast cancer who previously received trastuzumab and a taxane, separately or in combination	02/2013
ENHERTU ® (trastuzumab deruxtecan) ²	HER2	Adults with unresectable or metastatic HER2+ breast cancer who have received ≥2 prior anti-HER2 based regimens	12/2019
TRODELVY ® (sacituzumab govitecan) ³	TROP-2	Adult patients with metastatic triple-negative breast cancer (TNBC) who have received ≥ 2 prior therapies for metastatic disease	06/2020


1. KADCYLA (trastuzumab emtansine) [package insert]. San Francisco, CA: Genentech, Inc; 2019.

2. ENHERTU (trastuzumab deruxtecan) [package insert]. Basking Ridge, NJ: Daiichi Sankyo, Inc; 2019.

3. TRODELVY (sacituzumab govitecan-hziy) [package insert]. Morris Plains, NJ: Immunomedics, Inc; 2020.

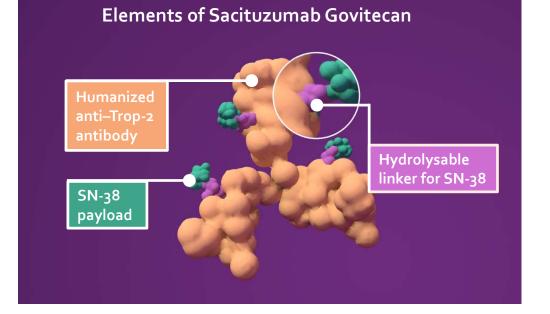
T-DM1



- HER2+ antitumor and DM1 cytotoxic activity¹
- DM1 payload
- DM1, a maytansinoid, is approximately 20 to 200 times more potent than taxanes and vinca alkaloids^{2,3}
- MCC linker was designed to provide a more stable bond between¹⁻³ trastuzumab and the active cytotoxic agent, with the goal of minimizing systemic exposure in circulation

DM1, myotonic dystrophy type 1; mAB, monoclonal antibody; MCC, N-succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate; T-DM1, trastuzumab emtansine.

1. KADCYLA Prescribing Information. Genentech, Inc. 2019; 2. Lewis Phillips GD, Li G, Dugger DL, et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008;68(22):9280-9290; 3. Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer. 2017;117(12):1736-1742; 4. Brufsky AM. HER2-Positive Metastatic Breast Cancer: Current Status and Promising Agents.


https://www.clinicaloptions.com/sitecore/content/clinicaloptions/cco/oncology/programs/her2-positive-mbc-care/module/text-module/page-5#. Published April 13, 2020. Accessed October 22, 2020.

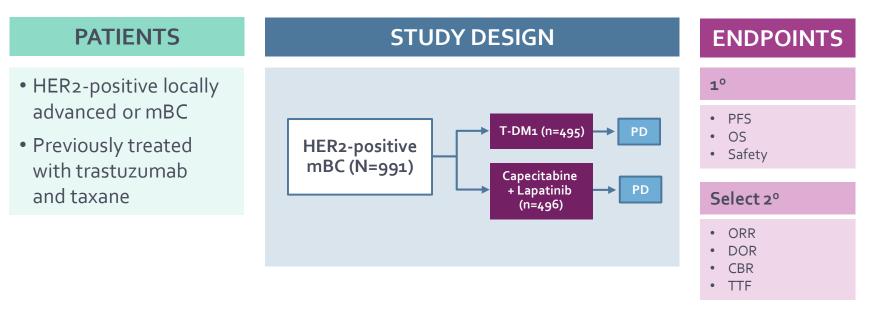
Presented at: American Society for Clinical Oncology 2020 Virtual Scientific Program; May 29 - 31. Accessed November 6, 2020. https://meetinglibrary.asco.org/session/12667

Sacituzumab Govitecan

- SN-38 is the active metabolite of irinotecan, a topoisomerase I inhibitor that interferes with cell growth and spread¹
- Sacituzumab govitecan delivers up to 136x more SN-38 than irinotecan²
- Inhibition of topoisomerase I by SN-38 leads to apoptosis¹

Mechanism of Sacituzumab Govitecan (IMMU-132)

1. Bardia A et al. J Clin Oncol. 2017;35(19):2141-2148; 2. Goldenberg DM et al. Oncotarget. 2015;6(26):22496–22512.

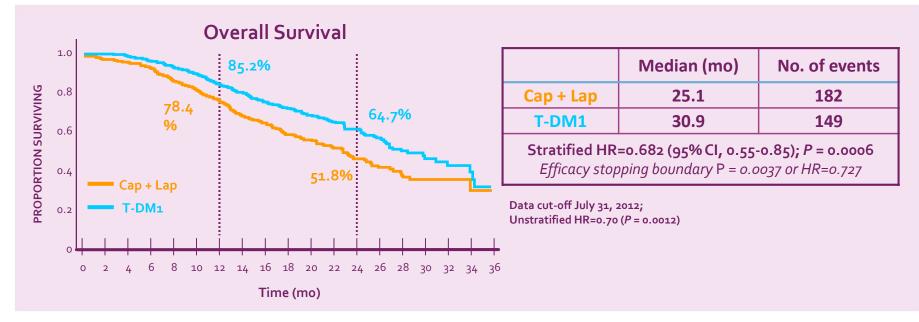


ADCs Targeting HER2

T-DM

Printo Practical Recommendations in Immuno & Molecular Oncology ADC Summit

EMILIA: Improved OS With T-DM1 vs Capecitabine + Lapatinib in Pts With HER2+ Locally Advanced or mBC


CBR, clinical benefit rate; DOR, duration of response; OS, overall survival; PD, progressive disease; PFS, progression-free survival; Pts, patients; ORR, overall response rate; TTF, time to treatment failure. U.S. National Library of Medicine Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT00829166. Accessed November 8, 2020. Last updated: October 31, 2016.

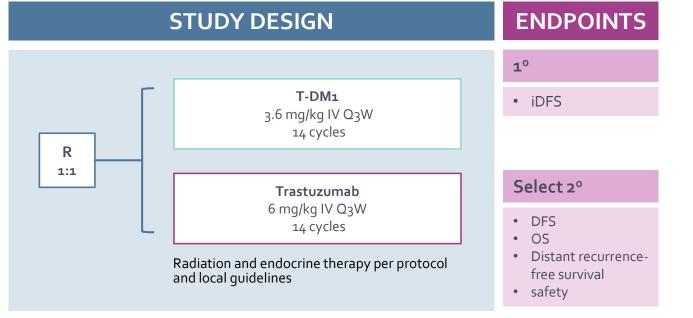
T-DM1

EMILIA Led to Kadcyla Approval in Patients With HER2+ Locally Advanced or mBC in Feb 2013^{1,2}

ANTITUMOR ACTIVITY

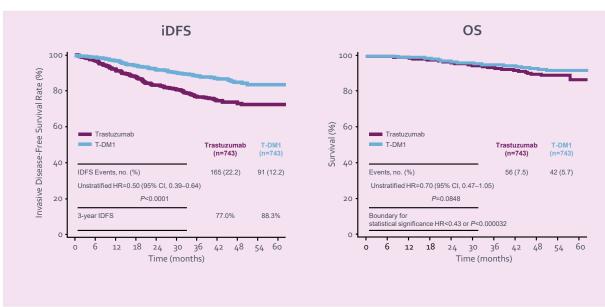
Cap, capecitabine; CI, confidence interval; HR, hazard ratio; Lap, lapatinib; mo, month.

1. CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 125427Orig1s000. fda.gov.URL: https://www.accessdata.fda.gov/drugsatfda_docs/nda /2013/125427Orig1s000SumR.pdf. Published February 21, 2013. Accessed May 11, 2020; 2. Verma S et al. N Engl J Med. 2012;367:1783-1791.


T-DM

KATHERINE: Ph 3, Open-Label Study of Adjuvant T-DM1 vs Trastuzumab for Residual Invasive HER2-Positive BC

PATIENTS


- cT1-4/No-3/Mo at presentation (cT1a-b/No excluded)
- Centrally confirmed HER2-positive breast cancer
- Neoadjuvant therapy must have consisted of
 - Minimum of 6 cycles of chemotherapy
 - Minimum of 9 weeks of taxane
 - Anthracyclines and alkylating agents allowed
 - All chemotherapy prior to surgery
 - Minimum of 9 weeks of trastuzumab
 - Second HER2-targeted agent allowed
 - Residual invasive tumor in breast or axillary nodes
 - Randomization within 12 weeks of surgery

Presented by Charles E. Geyer at the San Antonio Breast Cancer Symposium 2018 Dec 4-8 Von Minckwitz G et al. *N Engl J Med*. 2019;380(7):617-628.

T-DM:

KATHERINE: iDFS and OS

ANTITUMOR ACTIVITY

SAFETY RESULTS

Practical Recommendations in Immuno & Molecular Oncology ADC Summit

- The most common AEs of gr ≥3 with T-DM1: decreased platelet count (in 5.7% of pts) and hypertension (2.0%); with trasuzumab: hypertension (1.2%), radiation-related skin injury (1.0%)
- SAEs occurred in 94 patients who received T-DM1 (12.7%) and 58 patients who received trastuzumab (8.1%)
- AEs leading to discontinuation occurred in 133 patients in the T-DM1 group (18.0%) and 15 patients in the trastuzumab group (2.1%)
- 1 pt in the T-DM1 group with a decreased platelet count died from an intracranial hemorrhage that occurred after a fall. The % of patients with hemorrhage of gr ≥3 were similar in the T-DM1 group and the trastuzumab group (0.4% and 0.3%)

Presented by Charles E. Geyer at the San Antonio Breast Cancer Symposium 2018 Dec 4-8

T-DI

T-DM1 Approved Based Upon Results From KATHERINE

As of May 6, 2019, the FDA has approved ado-trastuzumab emtansine (T-DM1; KADCYLA) for use as an adjuvant treatment of patients with HER2-positive early breast cancer who have residual invasive disease following neoadjuvant trastuzumab (Herceptin) and chemotherapy¹

NCCN Guidelines Recommend T-DM1 for HER2-positive Breast Cancer Residual Disease :

- If HER2-positive with presence of residual disease²
- T-DM1 alone for 14 cycles (KATHERINE3)

T-DM1

Selected Ongoing Studies With T-DM1

Study	Ph	Patients	Ν	Arms	1° EP	Est Study Completion
ATOP TRIAL ¹	2	TIER2-positive breast cancer	82	Experimental: T-DM1	5-year iDFS rate	01/2022

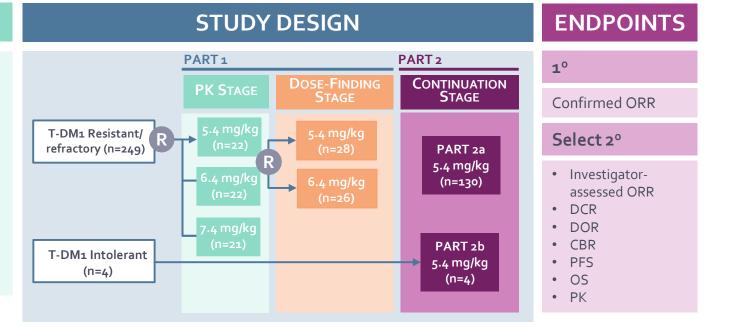
ADC Summit

Several clinical studies of combinations with T-DM1 are ongoing and not represented in this list.

EST, estimated; ET, endocrine therapy; EP< endpoint; iDFS, invasive disease-free survival; pCR, pathological compete response rate; ph, phase; pt, patient.

1. U.S. National Library of Medicine Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT03587740. Published July 16, 2018. Accessed November 7, 2020. Last updated: October 5, 2020;

2. U.S. National Library of Medicine Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT01745965. Published December 10, 2012. Accessed November 7, 2020. Last updated: July 23, 2020.


T-DX

DESTINY-BREASTo1 Study Schema^{1,2}

• ≥18 years of age

- Unresectable and/or mBC
- HER2-positive (centrally confirmed on archival tissue)
- Prior T-DM1
- Excluded patients with history of significant ILD
- Stable, treated brain metastases were allowed

Practical Recommendations in Immuno & Molecular Oncology ADC Summit

DCR, disease control rate; ILD, interstitial lung disease, PK, pharmacokinetics.

1. U.S. National Library of Medicine Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT03248492. Accessed November 7, 2020. Last updated: August 18, 2020; 2. Modi S et al. N Engl J Med. 2020;382(7):610-621.

T-DX

DESTINY-BREASTo1 (NCT03248492), Phase 2, Showed Positive Outcomes in OS, PFS, ORR, and Change in Baseline Tumor Size, Leading to Accelerated Approval of Trastuzumab Deruxtecan in 2019^{1,2}

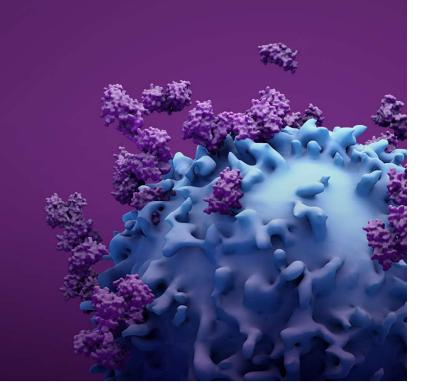
Primo Practical Recommendations in Immuno & Molecular Oncology ADC Summit

ANTITUMOR ACTIVITY

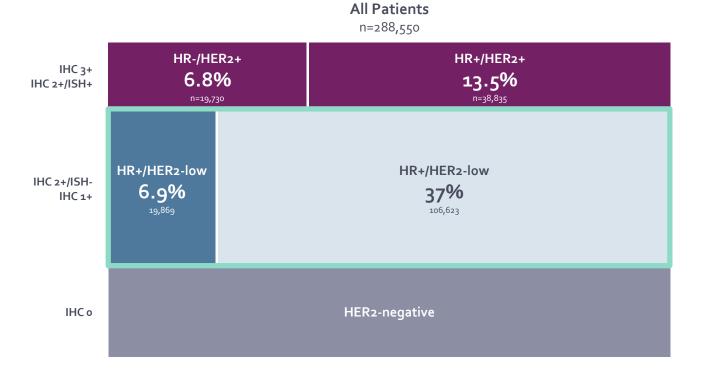
Endpoint	Result (N = 184)
OS, % (95% Cl) at 6 mo	93.9 (89.3, 96.6)
OS, % (95% Cl) at 12 mo	86.2 (79.8, 90.7)
PFS, mo (95% CI) for all patients	16.4 (12.7, NR)
PFS, mo (95% CI) for patients with asymptomatic brain metastases	18.1 (6.7, 18.1)
CBR	76.1 (69.3, 82.1)
Confirmed ORR	60.9 (53.4, 68)

SAFETY RESULTS

 Most common AEs of gr ≥3 were decreased neutrophil count (20.7% of patients), anemia (8.7%), and nausea (7.6%)


 T-DXd was associated with ILD in 13.6% of patients (gr 1 or 2, 10.9%; gr 3 or 4, 0.5%; and gr 5, 2.2%)

AE, adverse event; gr, grade; NR, not reached.


1. U.S. National Library of Medicine Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT03248492. Accessed November 7, 2020. Last updated: August 18, 2020; 2. Modi S et al. N Engl J Med. 2020;382(7):610-621.

T-DXd in HER2-Low

Ongoing Clinical Trials Have Defined Tumors With HER2-Low Expression as IHC 1+ or IHC 2+ and in-Situ Hybridization (ISH)-Negative

Prim(

Practical Recommendations in Immuno & Molecular Oncology ADC Summit

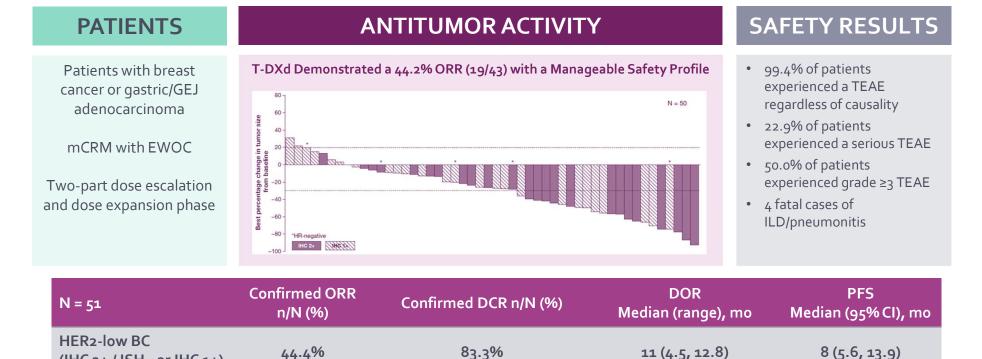
*Source: Decision Resources, inclusive of US, Europe, and Japan (Breast Cancer, Last updated, December 2017, CAncerMPACT (2017))

NSABP B-47: HER2-Negative Patients Derived Similar Benefits From Trastuzumab as Demonstrated in HER2-Positive Patients

STUDY DESIGN

NSABP B-47

- Randomized phase 3 study of 3,270 patients tested the hypothesis that trastuzumab can be effective in patients with node-positive or high-risk nodenegative breast cancer who are "HER2-low" (1+ or 2+ by immunohistochemistry, not amplified by fluorescence in situ hybridization)
- Patients were randomized to chemotherapy with or without trastuzumab for 1 year to determine if the addition of trastuzumab improves DFS


ANTITUMOR ACTIVITY

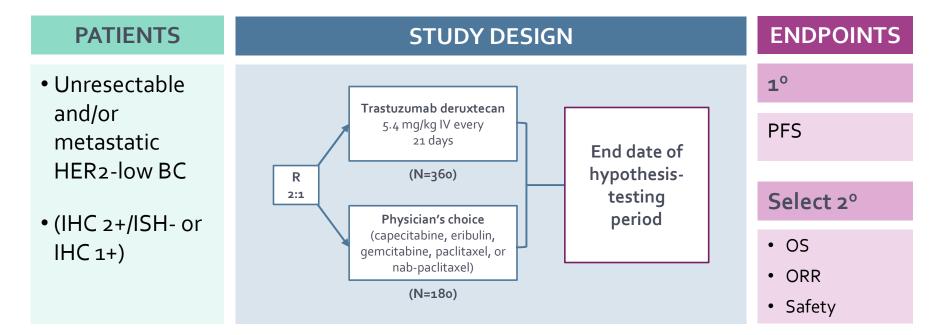
- Study demonstrated feasibility of identifying and accruing these patients to trials
- The randomized trial showed no improvement in invasive disease–free survival, overall survival, or other endpoints when women received 1 year of trastuzumab in addition to standard chemotherapy vs chemotherapy alone

1. https://www.ascopost.com/issues/january-25-2018/nsabp-b-47-no-benefit-for-adjuvant-trastuzumab-in-her2-low-breast-cancer/; 2. Romond EH, Perez EA, Bryant J, et al: Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353:1673-1684,2005; 3. Fehrenbacher L, Cecchini RS, Geyer CE, et al: NSABP B-47 (NRG Oncology): Phase III randomized controlled trial comparing adjuvant chemotherapy with adriamycin and cyclophosphamide followed by weekly paclitaxel, or docetaxel and cyclophosphamide with or without a year of trastuzumab in women with node-positive or high-risk node-negative invasive breast cancer expressing HER2 staining intensity of IHC 1+ or 2+ with negative FISH. 2017 San Antonio Breast Cancer Symposium. Abstract GS1-02. Presented December 6, 2017.

T-DX

J101 Ongoing Phase 1 Trial With T-DXd Demonstrated Positive Results in Patients With Heavily Pretreated, Advanced, HER2-Low BC

ADC Summit


EWOC, escalation with overdose control; GEJ, gastroesophageal junction; IHC, immunohistochemistry; ISH, in situ hybridization; mCRM, modified Continuous Reassessment Method; TEAE, treatment-emergent adverse event.

Modi S et al. J Clin Oncol. 2020;38(17):1887-1896.

(IHC 2+ / ISH- or IHC 1+)

T-DXc

DESTINY-Breasto4: Multicenter, Int'l, Randomized, Open-Label Phase 3 Study of T-DXd vs Investigators Choice in HER2-Low BC

ADC Summit

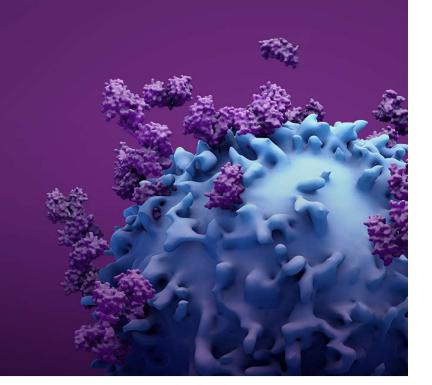
Estimated study completion: January 2023

U.S. National Library of Medicine Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT03734029. Accessed November 7, 2020. Last updated: October 20, 2020.

T-DX

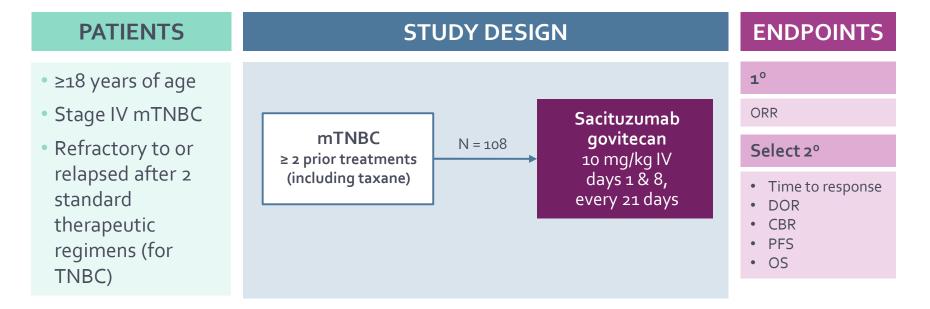
Ongoing Studies With T-DXd

Study	Ph	Patients	Ν		Arms	1º EP	
DESTINY-Breasto2 (NCT03523585) ¹	3	Previously treated unresectable and/or metastatic HER2-positive BC	600	•	Experimental: T-DXd Comparator: trastuzumab + capecitabine Comparator: lapatinib + capecitabine	PFS based on BICR (2° EP: OS, ORR, DOR, PFS based on investigator's assessment)	09/2024
DESTINY-Breasto3 (NCT03529110) ²	3	Unresectable and/or metastatic HER2-positive BC previously treated with trastuzumab and taxane	500	•	Experimental: T-DXd Comparator: T-DM1	PFS based on BICR (2° EP: OS, ORR, DOR, PFS based on investigator's assessment)	04/2023
DESTINY-Breasto4 (NCT03734029) ³	3	Previously treated unresectable and/or metastatic HER2-low BC	540	•	Experimental: T-DXd Comparator: PC (capecitabine, eribulin, gemcitabine, paclitaxel, nab-paclitaxel)	PFS based on BICR (2° EP: PFS based on investigator's assessment, OS, ORR, DOR)	01/2023
DESTINY-Breasto5 (NCT04622319)	3	Patients with HER2-positive primary BC with residual invasive disease in breast or axillary lymph nodes with higher risk of recurrence	1600	•	Head-to-head comparison of T-DXd vs T-DM1	iDFS (2° EP: OS, DFS)	09/2027
DESTINY-Breasto6 (NCT04494425) ⁴	3	HER2-Low, HR+ adv or metastatic BC who have had disease progression on ≥2 lines of ET	850	•	Experimental: T-DXd Comparator: SOC (capecitabine, paclitaxel, nab-paclitaxel)	PFS in HR+, HER2-low (2° EP: PFS in ITT, OS, ORR, DOR, PFS, safety, TTD, HRQoL)	12/2022


BICR, blinded independent central review ; HRQoL, health-related quality of life; ITT, intention-to-treat; PC, physician's choice SOC, standard of care.

1. U.S. National Library of Medicine Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT03523585. Accessed November 7, 2020. Last updated: September 30, 2020; 2. U.S. National Library of Medicine Clinicaltrials.gov. Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT03529110. Accessed November 7, 2020. Last updated: September 25, 2020; 2. U.S. National Library of Medicine Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT03529110; 3. U.S. National Library of Medicine Clinicaltrials.gov. October 20, 2020; 4. U.S. National Library of Medicine Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT03734029. Accessed November 7, 2020. Last updated: October 20, 2020; 4. U.S. National Library of Medicine Clinicaltrials.gov.URL: https://clinicaltrials.gov/ct2/show/NCT04494425. Accessed: November 7, 2020. Last updated: November 5, 2020.

ADCs IN TRIPLE-NEGATIVE BREAST CANCER (TNBC)



Breast Cancer

Sacituzumab Govitecan

IMMU-132-01: Ph 1/2 Study of Sacituzumab Govitecan (IMMU-132) in Pts With Epithelial Cancers^{1,2}

TNBC, triple-negative breast cancer.

1. Bardia A et al. N Engl J Med. 2019; 380(8):741-751; 2. Goldenberg DM et al. Oncotarget. 2015;6(26):22496–22512; 2. U.S. National Library of Medicine Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT01631552. Accessed November 7, 2020. Last updated: September 9, 2020.

Sacituzumab Govitecan

Sacituzumab Govitecan Was Associated With Durable Objective Responses in Patients With Heavily Pretreated mTNBC

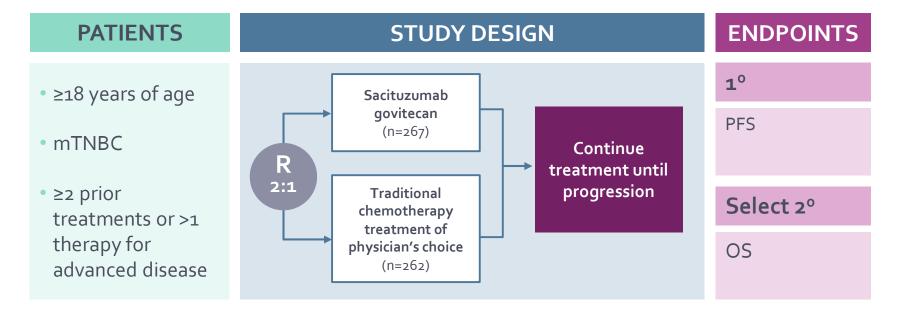
ANTITUMOR ACTIVITY

- ORR = 33.3% (36/108)
- CBR = 45.4% (49/108)

Endpoint	Result (N = 108)			
Median PFS, mo (95% Cl)	5.5 (4.1, 6.3)			
Median OS, mo (95% CI)	13.0 (11.2, 13.7)			
Median time to onset of response, mo (range)	2.0 (1.6, 13.5)			
Median DOR, mo (95% Cl)	7.7 (4.9, 10.8)			

Bardia A et al. N Engl J Med. 2019; 380(8):741-751.

SAFETY RESULTS


- 4 deaths (3.7%) occurred during treatment
- 3 pts (2.8%) discontinued treatment because of AEs
- Gr 3 or 4 AEs occurred in ≥10% of pts, including anemia and neutropenia
 - Gr 3 or 4 neutropenia occurred in 45 pts (41.7%)
 - Gr 3 anemia occurred in 12 pts (11%)
- 10 pts (9.3%) had febrile neutropenia

Breast (Cancer
----------	--------

Sacituzumab Govitecan

ASCENT: Phase 3 Study of Sacituzumab Govitecan (IMMU-132) Previously Treated TNBC^{1,2}

1. U.S. National Library of Medicine Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT02574455. Accessed November 7, 2020. Last updated: October 8, 2020;

2. Bardia A. ASCENT: A randomized phase III study of sacituzumab govitecan (SG) vs treatment of physician's choice (TPC) in patients (pts) with previously treated metastatic triple-negative breast cancer (mTNBC). Presented at: European Society for Medical Oncology Virtual 2020 Scientific Sessions. September 19, 2020. https://oncologypro.esmo.org/meeting-resources/esmo-virtual-congress-2020/ascent-a-randomized-phase-iii-study-of-sacituzumab-govitecan-sg-vs-treatment-of-physician-s-choice-tpc-in-patients-pts-with-previously-treat.

Sacituzumab Govitecan

ASCENT: Results Confirm Sacituzumab Govitecan Should Be Considered as a New SOC in Pts With Pretreated mTNBC

ANTITUMOR ACTIVITY

BCIR Analysis	SG (n=235) TPC (n=233)			SG	ТРС
No. of events	166 150			(n=235)	(n=233)
mPFS – mo (95% CI)	5.6 (4.3-6.3) 1.7 (1.5-2.6)				
HR (95% CI), <i>P</i> value	0.41 (0.32-0.52) <i>P</i> < 0.0001		ORR – no. (%)	82 (35)	11 (%)
OS	SG (n=235) TPC (n=233)		P value	< 0.0001	
No. of events	155	185	CR 10(4)		2 (1)
		(- (- 0))	CK	10(4)	2 (1)
mOS – mo (95% Cl)	12.1 (10.7-14.0)	6.7 (5.8-7.7)			

SAFETY RESULTS

ADC Summit


- Key gr ≥3 TRAEs (SG): neutropenia (51%), diarrhea (10%), leukopenia (10%) anemia (8%), and febrile neutropenia (6%)
- No severe cardiovascular toxicity, no gr >2 neuropathy or gr >3 ILD with SG
- No treatment-related deaths with SG
- AEs leading to treatment discontinuations were low for SG (4.7%)

mOS, median overall survival; SG, sacituzumab govitecan; TPC, treatment of physician's choice.

Bardia A. ASCENT: A randomized phase III study of sacituzumab govitecan (SG) vs treatment of physician's choice (TPC) in patients (pts) with previously treated metastatic triple-negative breast cancer (mTNBC). Presented at: European Society for Medical Oncology Virtual 2020 Scientific Sessions. September 19, 2020. https://oncologypro.esmo.org/meeting-resources/esmo-virtual-congress-2020/ascent-a-randomized-phase-iii-study-of-sacituzumab-govitecan-sg-vs-treatment-of-physician-s-choice-tpc-in-patients-pts-with-previously-treat.

Sacituzumab Govitecan

TROPiCS-02: Ph 3 Study of Sacituzumab Govitecan (IMMU-132) in Patients With HR+/HER2–Negative mBC

Prim

ADC Summit

Estimated study completion: May 2023

CDK4/6, cyclin-dependent kinase 4/6 inhibitor. U.S. National Library of Medicine Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT03901339. Accessed November 7, 2020. Last updated: September 29, 2020.

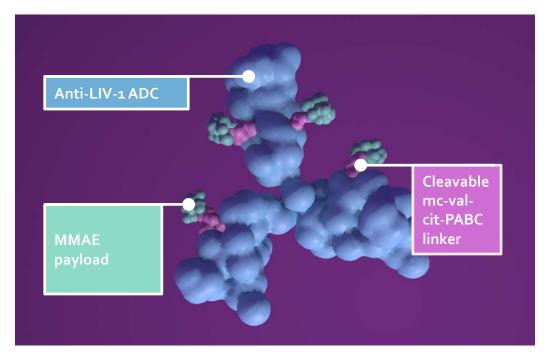
Sacituzumab Govitecan

Ongoing Studies With Sacituzumab Govitecan in Breast Cancer

Study	Ph	Patients	Ν	Arms	1° EP	Est Study Completion
NCT04230109 (NeoSTAR) ¹	2	Pts with localized TNBC	~50	Safety and efficacy of sacituzumab govitecan in localized TNBC	DFS, OS	August 31, 2023
NCT03992131 (SEASTAR) ²	1b/2	Pts with TNBC and other cancers	329	Safety, tolerability, PK, and preliminary efficacy of sacituzumab govitecan + rucaparib in patients an advanced/metastatic solid malignancy	Safety, ORR	March 2024
NCT04039230 ³	1/2	Pts with mTNBC	65	Effects of sacituzumab govitecan + talazoparib	Safety	August 31, 2024

DFS, disease-free survival.

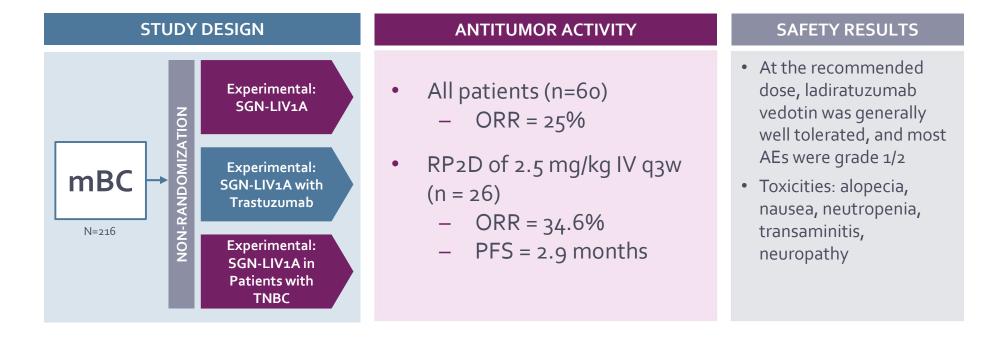
1. U.S. National Library of Medicine Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT04230109. Accessed November 7, 2020. Last updated: July 16, 2020; 2. U.S. National Library of Medicine Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT03992131. Accessed November 7, 2020. Last updated: August 26, 2019; 3. U.S. National Library of Medicine Clinicaltrials.gov. URL: https://www.clinicaltrials.gov/ct2/show/NCT04039230. Accessed November 7, 2020. Last updated: May 5, 2020


Select Investigational ADCs in Breast Cancer

Trial	Drug name	Target	Ph	Brief Summary
NCT019696431	Ladiratuzumab vedotin	Anti–LIV-1	1	Safety/tolerability in patients with mTNBC
NCT03262935 ²	Trastuzumab duocarmazine (SYD985)	HER2- targeting	3	Patients with HER2+ mBC pretreated with T-DM1
NCT02980341 ²	U3-1402	HER3- targeting	1/2	Trial in patients with HER3+ mBC

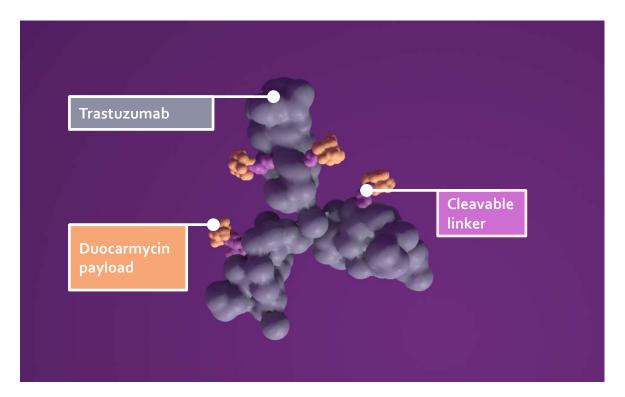
Practical Recommendations in Immuno & Molecular Oncology ADC Summit

1. U.S. National Library of Medicine Clinicaltrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT01969643. Accessed November 7, 2020. Last updated: October 22, 2020; 2. Rinnerthaler G et al. Int J Mol Sci. 2019;20(5):1115.


Ladiratuzumab vedotin (SGN-LIV1A)

- Ladiratuzumab vedotin delivers a potent microtubule-disrupting agent called MMAE via a protease-cleavable linker, to cancer cells expressing LIV-1^{1,2}
- LIV1 is a transmembrane cell adhesion molecule highly expressed in metastatic breast cancer
- The disruption of microtubules leads to targeted tumor cell cycle arrest/disruption²

MMAE, monomethyl auristatin E; mc-val-cit-PABC, Maleimidocaproyl-L-valine-L-citrulline-p-aminobenzyl alcohol. 1. Goldenberg DM et al. Oncotarget. 2018;9(48):28989–29006; 2. Sussman DM et al. *Mol Cancer Ther*. 2014;13(12):2991-3000.

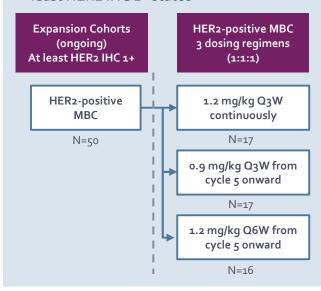

SGNLVA-001: A Phase 1 Safety Study of Ladiratuzumab Vedotin (SGN-LIV1A) in Patients With Heavily Pretreated mBC^{1,2}

q3w, every 3 weeks.

1. U.S. National Library of Medicine ClinicalTrials.gov. URL: https://www.clinicaltrials.gov/ct2/show/NCT01969643. Accessed November 8, 2020. Last updated: October 22, 2020; 2. Modi S, et al. Cancer Res.2018;78(4 Suppl): Abstract PD3-14.

Trastuzumab Duocarmazine (SYD985)^{1,2}

- HER2-targeting ADC¹
- Duocarmycins are DNA-alkylating agents composed of a DNA-alkylating and a DNA-binding moiety²


1. Banerji U et al. Lancet Oncol. 2019;20(8):1124-1135; 2. Rinnerthaler G et al. Int J Mol Sci. 2019;20(5):1115.

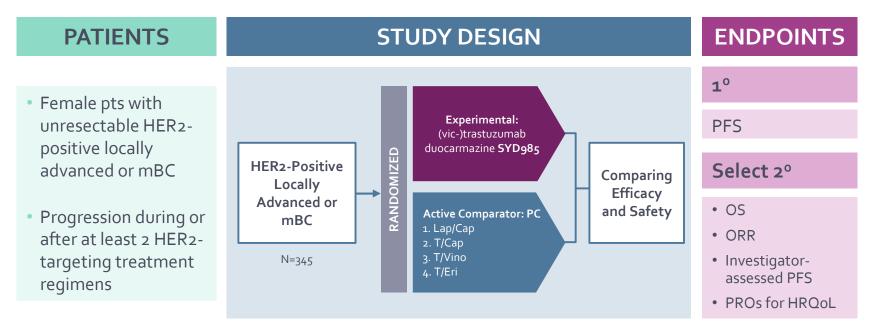
SYD985 Shows Promising Efficacy in Heavily Pretreated Patients With HER2-Positive Breast Cancer

STUDY DESIGN

 Patients with any solid tumor and at least HER2 IHC 1+ status

ANTITUMOR ACTIVITY

Patients with BC	N	ORR (%)	Median PFS (95% CI)
HER2-positive T-DM1 pretreated	50 40	14 (29) 9 (24)	9.4 (4.5-12.4) 8.3 (4.1-15.0)
HR+/HER2-low	32	6 (20)	4.1(2.4-5.4)
TNBC	17	4 (27)	4.4. (1.0-7.1)

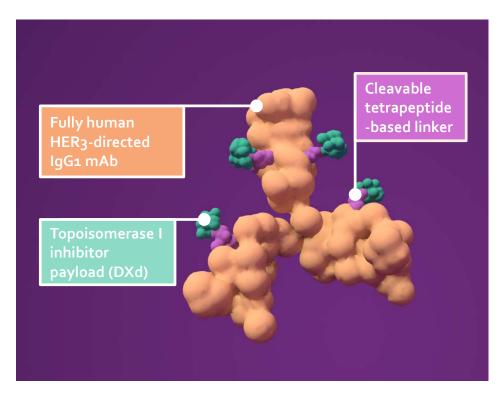

SAFETY RESULTS

- Majority of ADRs were gr 1 or 2 in intensity, with 6% of all ADRs gr ≥3
- Ocular toxicity and fatigue were most commonly reported
- No treatmentrelated deaths

ADR, adverse drug reaction; Q6W; every 6 weeks.

Saura C et al. A phase I expansion cohorts study of SYD985 in heavily pretreated patients with HER2-positive or HER2-low metastatic breast cancer. Poster presented at: American Society of Clinical Oncology Annual Meeting. June 1-5, 2018

TULIP: Ph 3 Randomized, Active-Controlled, Superiority Study of SYD985 vs PC in Patients With HER2-Positive Locally Advanced or mBC



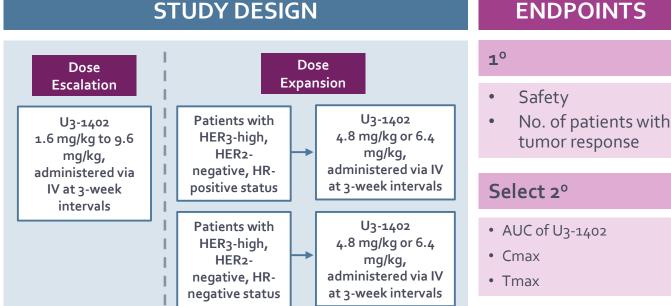
ADC Summit

Eri, eribulin, Pc, physician's choice; PROS, patient-reported outcomes; T, trastuzumab; Vino, vinorelbine.

U.S. National Library of Medicine ClinicalTrials.gov. URL: https://clinicaltrials.gov/ct2/show/NCT03262935. Accessed November 8, 2020. Last updated: October 5, 2020.

Patritumab Deruxtecan (U3-1402)

lgG1, immunoglobulin G1. Hashimoto et al. Clin Cancer Res. 2019;25(23):7151-7161.


- HER3-targeting IgG1 ADC
- Cleavable tetrapeptide-based linker
- Topoisomerase I inhibitor payload (DXd)
- U3-1402 shows HER3-specific binding with highly efficient internalization into tumor cells
- After linker cleavage, U₃-1402 induces tumor cells to undergo apoptosis through DNA damage via released DXd

Phase 1/2, Multicenter, Open-Label, Multiple-Dose Study of U3-1402, in Pts With HER3-Positive mBC

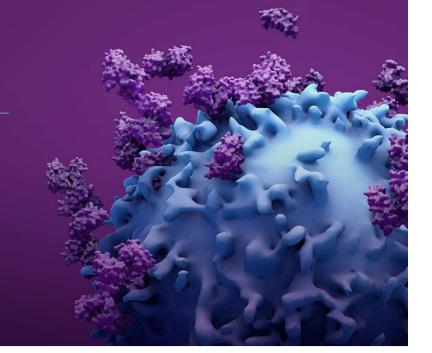
PATIENTS Advanced/unresectable or metastatic HER₃positive BC

- Disease refractory to intolerable with standard treatment
- Received 2-6 prior chemotherapy regimens for BC, of which ≥2 were administered for advanced/unresectable or metastatic disease

AUC, area under curve; Cmax, maximum concentration; Tmax, time to maximum.

U.S. National Library of Medicine ClinicalTrials.gov. URL:https://clinicaltrials.gov/ct2/show/NCT02980341. Accessed November 8, 2020. Last updated: April 6, 2020.

Key Learnings


- There are 2 ADCs FDA approved in HER2+ BC
- Sacituzumab govitecan gained FDA approval for adults with mTNBC who received ≥2 prior therapies for metastatic disease
- Clinical trials are ongoing for several agents for the treatment of patients with HER2-low, HER3-positive, and TNBC

Thank You!

Clinical Applications of ADCs

2 ADCs Currently Approved for HER2+ BC^{1,2}

Trastuzumab emtansine (T-DM1; Kadcyla)	 indicated, as a single agent, for the treatment of patients with HER2-positive, metastatic breast cancer who previously received trastuzumab and a taxane, separately or in combination. Patients should have either: Received prior therapy for metastatic disease, or Developed disease recurrence during or within 6 months of completing adjuvant therapy.
Trastuzumab deruxtecan (DS8201a; T-DXd; Enhertu)	indicated for the treatment of adult patients with unresectable or metastatic HER2-positive breast cancer who have received 2 or more prior anti-HER2-based regimens in the metastatic setting. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial.

mBC, metastatic breast cancer; mTNBC, metastatic triple-negative breast cancer; TROP-2, tumor-associated calcium signal transducer 2.

^{1.} KADCYLA (trastuzumab emtansine) [package insert]. San Francisco, CA: Genentech, Inc; 2019; 2. ENHERTU (trastuzumab deruxtecan) [package insert]. Basking Ridge, NJ: Daiichi Sankyo, Inc; 2019.

ADCs in HER2+ BC: NCCN Guidelines

PREOPERATIVE/ADJUVANT THERAPY REGIMENS

HER2-Positive

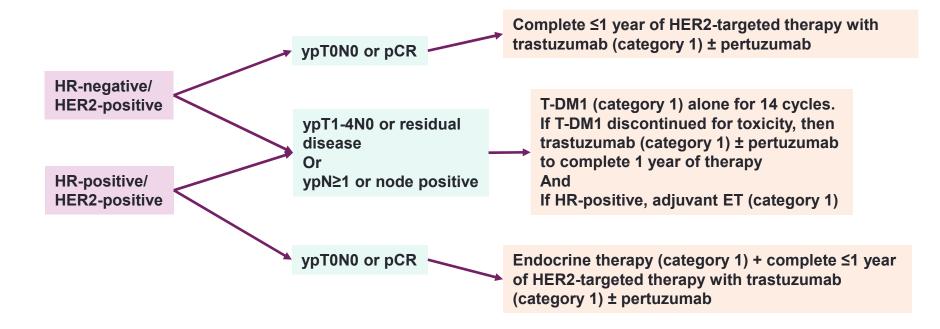
Preferred Regimens:

- AC followed by T + trastuzumab
 AC followed by T + trastuzumab + pertuzumab
- Paclitaxel + trastuzumab
- TCH
- TCHP
- If no residual disease after preoperative therapy or no preoperative therapy: complete ≤ 1 year of HER2-targeted therapy with trastuzumab ± pertuzumab
- If residual disease after preoperative therapy: T-DM1 (cat 1) alone. If T-DM1 is discontinued for toxicity, then trastuzumab (cat 1) ± pertuzumab to complete 1 year of therapy

Useful in Certain Circumstances:

• Docetaxel + cyclophosphamide + trastuzumab

Other recommended Regimens:


- AC followed by docetaxel + trastuzumab
- AC followed by docetaxel + trastuzumab + pertuzumab

AC, doxorubicin/cyclophosphamide; TCH, docetaxel/carboplatin/trastuzumab; TCHP, docetaxel/carboplatin/trastuzumab/pertuzumab; T, paclitaxel. NCCN, National Comprehensive Cancer Network.

ADCs in HER2+ BC: NCCN Guidelines (Continued)

ADJUVANT SYSTEMIC THERAPY AFTER PREOPERATIVE SYSTEMIC THERAPY

NCCN, National Comprehensive Cancer Network.

ADCs in HER2+ BC: NCCN Guidelines (Continued)

SYSTEMIC TREATMENT OF RECURRENT OR STAGE IV DISEASE: ER- AND/OR PR-NEGATIVE; HER2-POSITIVE

Systemic therapy + HER2-targeted therapy with:

- Pertuzumab + trastuzumab + taxane
- T-DM1
- T-DXd
- Trastuzumab + chemotherapy
- Other HER2-targeted therapies

Most patients will be candidates for multiple lines of systemic therapy to palliate advanced BC. At each reassessment, clinicians should assess value of ongoing treatment, the risks and benefits of an additional line of systemic therapy, patient performance status, and patient preferences through a shared-decision making process

ADC Summit

SYSTEMIC TREATMENT OF RECURRENT OR STAGE IV DISEASE: ER- AND/OR PR-POSITIVE; HER2-POSITIVE

Systemic therapy + HER2-targeted therapy with:

- Pertuzumab + trastuzumab + taxane
- T-DM1
- T-DXd
- Trastuzumab + chemotherapy
- Endocrine therapy +/- HER2-targeted therapy (if premenopausal, consider ovarian ablation or suppression)
- Other HER2-targeted therapies

Continue therapy until progression or unacceptable toxicity

NCCN, National Comprehensive Cancer Network.

1 ADC Currently Approved for TNBC¹

Sacituzumab govitecan (Trodelvy)

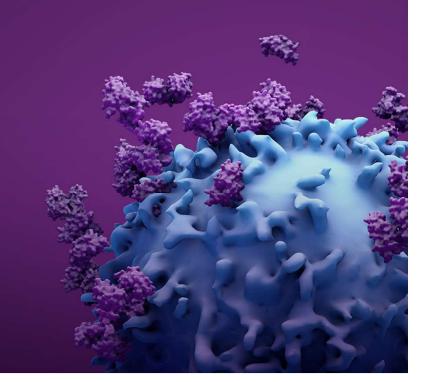
indicated for the treatment of adult patients with mTNBC who have received at least 2 prior therapies for metastatic disease. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

ADC Summit

1. TRODELVY (sacituzumab govitecan-hziy) [package insert]. Morris Plains, NJ: Immunomedics, Inc; 2020.

NCCN Guidelines—Systemic Therapy For Recurrent TNBC

SYSTEMIC THERAPY REGIMENS FOR RECURRENT OR STAGE IV (M1) DISEASE


HER2-Negative						
 Preferred Regimens: Anthracyclines: doxorubicine, liposomal doxorubicin Taxanes: paclitaxel Anti-metabolites: capecitabine, gemcitabine Microtubule inhibitors: vinorelbine, eribulin For germline BRCA1/2 mutations, see additional targeted therapy options Platinum (for TNBC and germline BRCA1/2 mutation): carboplatin, cisplatin For PD-1L-positive TNBC see 	 Other Recommended Regimens: Cyclophosphamide Docetaxel Albumin-bound paclitaxel Epirubicine Ixabepilone Sacituzumab govitecan-hziy (for TNBC) 	 Useful in Certain Circumstances: AC (doxorubicin/cyclophosphamide) ED (epirubicin/cyclophosphamide) CMF (cyclophosphamide/ methotrexate/uorouracil) Docetaxel/capecitabine GT (gemcitabine/paclitaxel) Gemcitabine/carboplatin Paclitaxel/becacizumab Carboplatin + paclitaxel or albumin- bound paclitaxel 				

BRCA, BReast CAncer gene; PD-L1, programmed death-ligand 1. NCCN, National Comprehensive Cancer Network.

additional targeted therapy options

Combinations With Immunotherapy

ADC and Immunotherapy Combinations: Rationale^{1,2}

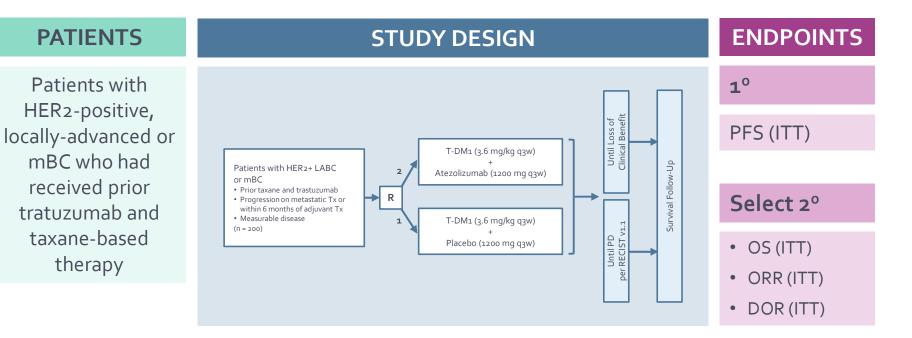
- Preclinical data suggests ADCs result in TIL expansion and effector T cell activation, which may help overcome anti-CTLA4 and anti-PD-1 resistance¹
- Proposed synergy: ADCs increase T-cell infiltration and immunotherapy revives exhausted T-cells¹
- Sacituzumab govitecan: Response rate of 44% (8 of 18) among patients who had received previous checkpoint inhibitors²
 - Suggests a lack of cross-resistance with immune checkpoint inhibitors and the potential of combination therapy

1. Tray N et al. Future Oncol. 2018;14(25):2651-2661; 2. Bardia A et al. N Engl J Med. 2019:380;741-751.

ADCs and Immunotherapy Combinations

Trial	Regimen	Ph	N	Brief Summary	Study Completion
NCT04042701 ¹	Trastuzumab deruxtecan + Pembrolizumab	ıb	~115	 Dose escalation to determine recommended dose of combination Dose expansion to evaluate efficacy, safety, and tolerability of combination in patients with metastatic HER2+ or HER2-low BC 	4/2022
NCT03424005 (Morpheus-TNBC) ⁶	Ladiratuzumab vedotin/sacituzumab govitecan + Atezolizumab	1b/2	~280	Safety and efficacy of multiple immunotherapy-based combinations in metastatic or inoperable TNBC	6/2022
NCT03310957 (KEYNOTE-721) ⁵	Ladiratuzumab vedotin + Pembrolizumab (1L)	1b/2	~122	Safety and efficacy of ADC + immunotherapy combination in locally-advanced or metastatic TNBC	3/2023
NCT03032107 ²	Trastuzumab emtansine + Pembrolizumab	1	~27	Tests safety of intervention in patients with metastatic HER2+ BC and attempts to define the appropriate dosage for future studies	7/2024

1. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04042701. Published August 2, 2019. Accessed April 21, 2020; 2. ClinicalTrials.gov.


https://clinicaltrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT03032107. Published January 26, 2017. Accessed April 21, 2020; 3. ClinicalTrials.gov/ct2/show/NCT0303210. Published January 2000; 3. ClinicalTrials.gov/ct2/show/Published January 2000; 3. ClinicalTrials.gov/ct2/show/Published January

October 5, 2016. Accessed April 24, 2020; 4. Emens LA, Esteva F, Beresford M, et al. In: Proceedings of the 2018 San Antonio Breast Cancer Symposium; 2018 Dec 4-8; San Antonio, TX.

Philadelphia (PA): AACR; Cancer Res 2019;79(4 Suppl):Abstract nr PD3-01. doi: 10.1158/1538-7445.SABCS18-PD3 01; 5. ClinicalTrials.gov.

https://clinicaltrials.gov/ct2/show/NCT03310957. Published October 16, 2017. Accessed April 21, 2020; 6. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03424005. Published February 6, 2018. Accessed April 21, 2020.

KATE2: Randomized, Phase 2 Study of Atezolizumab + T-DM1 vs Placebo + T-DM1 In Previously Treated HER2+ aBC

Primo Practical Recommendations in Immuno & Molecular Oncology

ADC Summit

Presented at: SABCS 2018.

KATE₂ Did Not Demonstrate Meaningful PFS Benefit in the ITT Population

ANTITUMOR ACTIVITY

Median PFS (95% Cl): T-DM1 + atezolizumab: 8.5 mo (5.7 to NE) T-DM1 + placebo: 4.1 mo (2.7 to 11.1) Stratified HR, 0.60 (95% Cl: 0.32, 1.11)

Secondary EP: ORR in ITT Population					
	T-DM1 + Atezolizumab	T-DM1 + Placebo			
ORR%	45-5	43.5			
CR%	6.1	7.2			
PR%	39-4	36.2			
SD%	37.9	29.0			
PD%	16.7	26.1			

Emens LA et al. Poster Presented at SABCS December 4-8, 2018 https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(20)30465-4/fulltext

SAFETY RESULTS

Incidence, n (%)	T-DM1 + Atezo (N=132)	T-DM1 + Placebo (N=68)
Pts with ≥1 AE	131 (99.2)	65 (95.6)
Gr ≥3	58 (43.9)	28 (41.2)
Gr 5	1 (0.8)	0
Pts with ≥1 SAE	43 (32.6)	13 (19.1)
AE leading to atezolizumab/placebo discontinuation	33 (25.0)	10 (14.7)
AE leading to T-DM1 discontinuation	20 (15.2)	9 (13.2)
AE leading to T-DM1 dose reduction	22 (16.7)	6 (8.8)

Thank You!

Printical Recommendations in Immuno & Molecular Oncology ADC Summit

Presentation Breakdown

- Hurvitz: Slides 1-18, 42-48
- Gradishar: Slides 19-41, 49-54