

Practical Recommendations in Immuno and Molecular Oncology (PRIMO) Antibody-Drug Conjugate (ADC) Summit

Clinical Applications of ADCs

February 2, 2021

Important Information About Today's Webcast

- Audio for today's program will be provided through your computer. Please ensure your speakers are turned up
- If you experience any technical difficulties during the program, please call our Live Technical Support Line at 866-227-3931 and one of our specialists will be able to assist you

Important Information About Today's Webcast

- A Q&A Session will follow today's presentations
 - You may submit your questions at any time via the **Q&A** icon at the bottom of your screen and clicking "Send"
 - Presenters will address as many questions as time permits

The PRIMO ADC Summit acknowledges support from educational grants provided by Daiichi Sankyo and Cancer Expert Now.

Learning Objectives

Identify current thinking and rationale around patient selection and sequencing of ADCs in breast cancer

 \leftarrow

Discuss current guidelines and recommendations

 \checkmark

Review patient cases to understand the clinical applications of FDA approved ADCs

ADC, antibody-drug conjugate; BC, breast cancer; FDA, US Food and Drug Administration.

Agenda

TIME (EST)	ΤΟΡΙϹ	SPEAKERS
6:00 – 6:05 PM	Welcome and Objectives	Sanjiv
6:05 – 6:25 PM	Introduction to ADCs Where do we stand and where are we going?	Daver
6:25 – 7:15 PM 6:25 – 6:40 PM 6:40 – 6:50 PM 6:50 – 7:05 7:05 – 7:15	Practical Considerations of ADC's ADCs in Triple Negative Breast Cancer Patient Case #1 ADCs in HER2+ Breast Cancer Patient Case #2 & 3	Hurvitz + Gradishar Gradishar Hurvitz + Gradishar
7:15 – 7:30 PM	Live Q&A	Hurvitz + Gradishar

Printon Practical Recommendations in Immuno & Molecular Oncology ADC Summit

Faculty Members

Naval G. Daver, MD Associate Professor Leukemia Department MD Anderson Cancer Center Houston, TX

Sara A. Hurvitz, MD, FACP Professor of Medicine Director, Breast Cancer Clinical Trials Program, Division of Hematology-Oncology David Geffen School of Medicine, UCLA Medical Director, Clinical Research Unit, Jonsson Comprehensive Cancer Center Los Angeles, CA

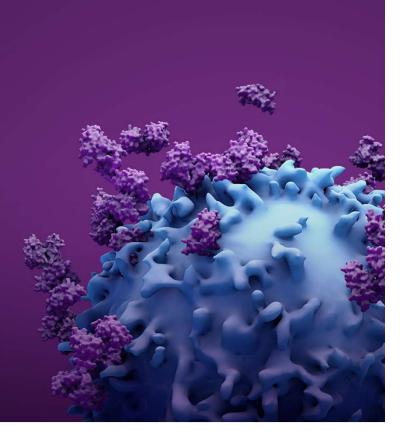
William J. Gradishar, MD, FASCO, FACP Betsy Bramsen Professor of Breast Oncology & Professor of Medicine Chief, Division of Hematology/Oncology Director, Maggie Daley Center for Women's Cancer Care Deputy Director, Clinical Network Robert H. Lurie Comprehensive Cancer Center Northwestern University Feinberg School of Medicine Chicago, IL

Naval G. Daver, MD

Associate Professor Leukemia Department MD Anderson Cancer Center Houston, TX

Disclosures

<u>Research Funding</u>: Pfizer, BMS, Novartis, Daiichi-Sankyo, Karyopharm, Incyte, Abbvie, Sunesis, Servier, Genentech, NOHLA, Glycomimetics, Immunogen, Sobi, Astellas, Hanmi, Forty Seven, Newave, Trovagene, Covance, Amgen

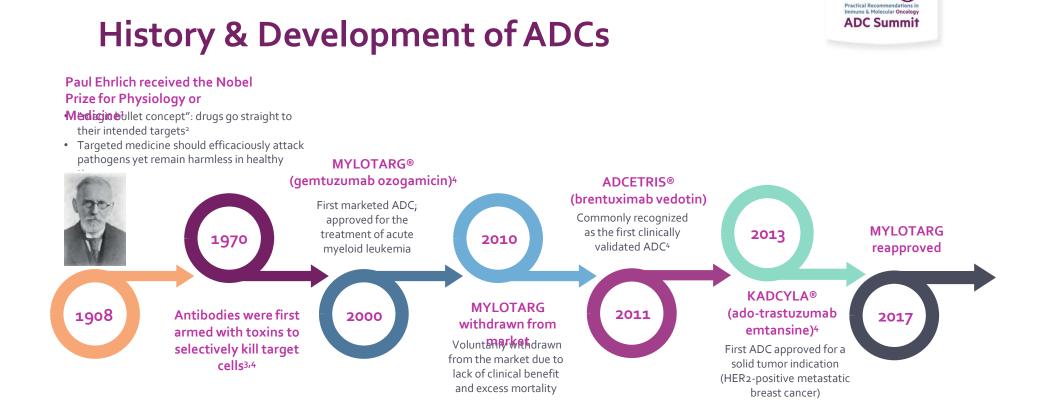

<u>Advisory/Consulting</u>: Pfizer, Novartis, BMS, Otsuka, Celgene, Incyte, Jazz, Karyopharm, Sunesis, Immunogen, Abbvie, Astellas, Daiichi-Sankyo, Agios

Intro to Antibody–Drug Conjugates (ADCs)

Where do we stand, and where are we going?

Naval G. Daver, MD Associate Professor Leukemia Department MD Anderson Cancer Center Houston, TX

Learning Objectives


Discuss ADCs currently FDA approved and in development

Review the development and structure of ADCs

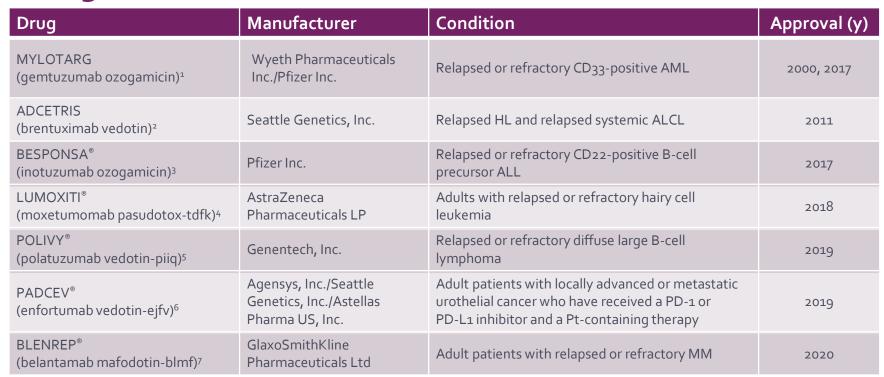
Overview common ADC mechanism of action

Discuss ongoing clinical development of ADCs for solid tumors

FDA, US Food and Drug Administration.

HER2, human epidermal growth factor receptor 2.

1. The Nobel Prize in Physiology or Medicine 1908. NobelPrize.org. Nobel Media AB 2020. Wed. 7 Oct 2020. https://www.nobelprize.org/prizes/medicine/1908/summary/; 2. Strebhardt, K., et al. Nature Reviews Cancer. 2008; 8(6), 473-480;


3. Moolten F.L., et al. Science. 1970; 169, 68-70; 4. Carter P, et al. Nat Rev Drug Disc. 2017; 17(3), 197–223.

Issues of Early ADCs

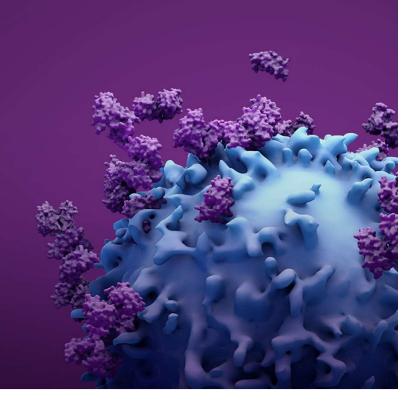
- Early ADCs used drugs that have been approved for clinical use, such as vinblastine and doxorubicin, but the low clinical activity of these drugs resulted in **suboptimal ADC efficacy**
- Some cytotoxins were too toxic to be non-target agents in clinical application but appeared to be promising payloads for ADCs
- Currently, most payloads are derivatives of the microtubule inhibitor family, such as auristatin and maytansine

ADCs FDA Approved for Hematologic Malignancies

ADC Summit

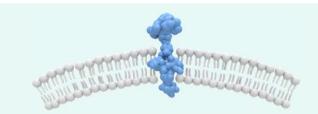
ALCL, anaplastic large cell lymphobma; ALL, acute lymphoblastic leukemia; AML, acute myelogenous leukemia; HL, Hodgkin lymphoma; MM, multiple myeloma; PD-1, programmed cell death protein 1; PD-1, programmed death ligand 1; Pt, platinum; y, year. 1. Mylotarg. Package insert. Prizer Inc; 2000; 2. Adcetris. Package insert. Seattle Genetics; 2011; 3. Besponsa. Package insert. Prizer Inc; 2017; 4. Lumoxili. Package insert. AstraZeneca; 2018; 5. Polivy. Package insert. Genentech Inc; 2019; 6. Padcev. Package insert. Astellas Pharma US Inc; 2019; 7. Biernep. Package insert. GlassmithKline; 2020.

ADCs FDA Approved for Solid Tumors (Breast Cancer)


Trade name	Company	Subtype	Condition	Approval Y
KADCYLA (ado-trastuzumab emtansine) ¹	Genentech, Inc.	HER2- positive	HER2-positive mBC following treatment with trastuzumab and a taxane	2013
ENHERTU [®] (fam-trastuzumab deruxtecan-nxki) ²	Daiichi Sankyo, Inc.		Adult patients with unresectable or metastatic HER2-positive BC who have received ≥2 prior anti–HER2-based regimens	2019
TRODELVY® (sacituzumab govitecan-hziy) ³	Immunomedics, TNB Inc.	TNRC	Adult patients with matastatic TNPC who	2020
		INBC	Adult patients with metastatic TNBC who have received at least 2 prior therapies	2020

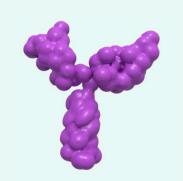
BC, breast cancer; mBC, metastatic breast cancer; TNBC; triple-negative breast cancer;.

1. Kadcyla. Package insert. Genentech Inc; 2013; 2. Enhertu. Package insert. Daiichi Sankyo, Inc; 2019; 3. Trodelvy. Package insert. Immunomedics, Inc; 2020.



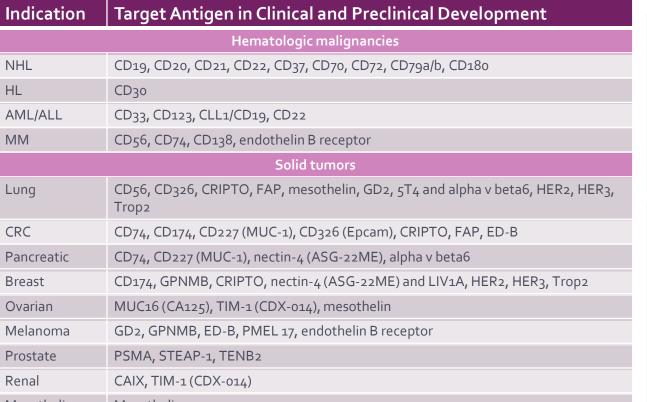
ADC Design and Structure

ADCs Are Built on Antibody Technology


Target Antigen

- High relative level of expression
- Immunizing extracellular domain
- No shed into the circulation
- Internalization capability
- May intervene in cell growth and has expression that covers multiple types of malignancies

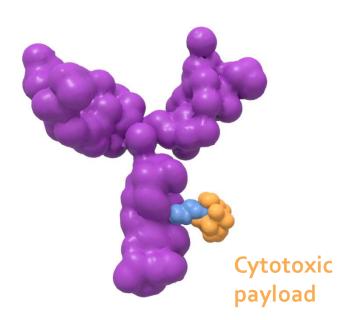
Conjugate Antibody


ADC Summit

- High specificity
- High affinity
- Capable of inducing receptormediated internalization

Nejadmoghaddam MR, et al. Avicenna J Med Biotech. 2019;11(1): 3-23.

ADCs in Development Target a Wide Range of Antigens With Different Characteristics



- Homogeneous target antigen expression in liquid tumors makes ADCs an attractive treatment option
- Heterogeneous target antigen expression in solid tumors may rely on bystander killing
- Target antigens can be specific (eg, those targeted for hematologic malignancies)
- Others may be expressed across multiple tumor types (eg, those targeted across solid tumors)

Mesothelioma Mesothelin

CAIX, carbonic anhydrase IX; CRC, colorectal cancer; HER3, human epidermal growth factor receptor 3; FAP, fibroblast activation protein; NHL, non-Hodgkin lymphoma; PSMA, prostate-specific membrane antigen; PMEL, premelanosome protein; STEAP-1; six transmembrane epithelial antigene of the prostate 1; TIM-1, T-cell immunoglobulin and mucin domain 1; Trop2; calcium signal transducer 2. Perez HJ, et al. Drug Discov Today. 2014;19(7):808-881.

Cytotoxic Payload¹

IC50, half maximal inhibitory concentration; PBD, pyrrolobenzodiazepine. Chau C, et al. *Lancet*. 2019;394(10200):793-804.

Highly potent, with IC50 values in the subnanomolar range

Targets:

- DNA (eg, duocarmycins, calicheamicins, PBDs, and SN-38 [the active metabolite of irinotecan])
- Tubulin (eg, maytansines and auristatins)

Payload Criteria:

- Amenability to conjugation
- Solubility
- Stability

There Are 2 Key Cytotoxic Payload Mechanisms of Action

DNA damage

- Target DNA minor grooves and induce double-strand breaks (eg, calicheamicins), DNA alkylation by binding specifically at AT-rich regions (eg, duocarmycins), and guanine residues (eg, PDBs)¹
- Calicheamicin-based ADCs:
 - gemtuzumab ozogamicin
 - inotuzumab ozogamicin

DM1, derivative of maytansine 1; MMAE, monomethyl auristatin E; MMAF, monomethyl auristatin F. 1. Chau C, et al. *Lancet.* 2019;394(10200):793-804; 2. Francisco JA, et al. *Blood.* 2003;102(4):1458-1465.

Tubulin inhibition

- Inhibit microtubule polymerization, causing G2/M phase cell-cycle arrest²
- MMAE (eg, brentuximab vedotin)
- MMAF (eg, belantamab mafodotin-blmf)
- DM1 is a highly potent maytansinoid (eg, ado-trastuzumab emtansine, fam-trastuzumab deruxtecan-nxki)

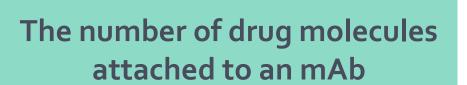
Tubulin Inhibitor

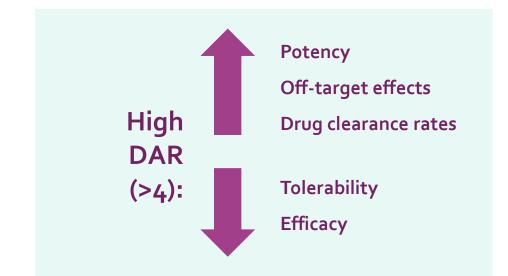
Linkers Connect the Payload to the mAb and Maintain Stability in Circulation¹⁻⁴

Payload Release Mechanism

Cleavable

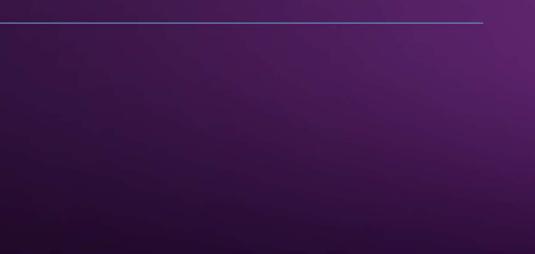
- Payload release from its carrier depends on the physiological environment^{1,3}
 - Acid-sensitive
 (eg, gemtuzumab ozogamicin, inotuzumab ozogamicin)
 - Lysosomal protease-sensitive (eg, brentuximab vedotin)

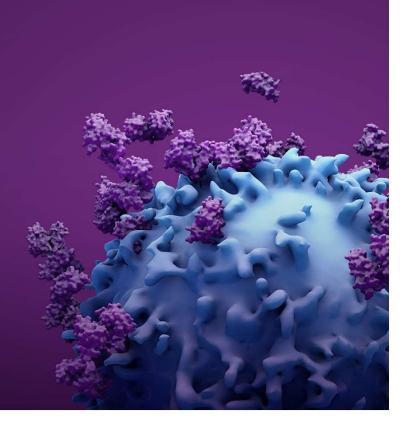

Non-Cleavable


- Attached by a nonreducible bond to the mAb that is more stable in the bloodstream¹
- Lysosomal degradation of the mAb is necessary for payload release (eg, ado-trastuzumab emtansine)
- Requires an efficient internalization process and optimal trafficking to lysosomes

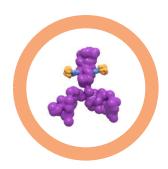
mAB, monoclonal antibody.

1. Chau C, et al. Lancet. 2019;394(10200):793-804; 2. Francisco JA, et al. Blood. 2003;102(4):1458-1465; 3. Beck A, et al. Nat Rev Drug Discov. 2017;16(5):315-337; 4. Dan N, et al. Pharmaceuticals (Basel). 2018; 9(11):32.

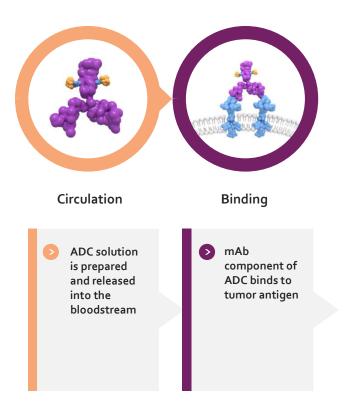

Drug	DAR (o – 8)
Enhertu (fam-trastuzumab deruxtecan-nxki)	8
Trodelvy (sacituzumab govitecan-hziy)	7.6
Besponsa (inotuzumab ozogamicin)	6
Blenrep (belantamab mafodotin-blmf)	4
Adcetris (brentuximab vedotin)	4
Padcev (enfortumab vedotin)	3.8
Polivy (polatuzumab vedotin-piiq)	3.5
Kadcyla (Trastuzumab emtansine)	3.5
Mylotarg (gemtuzumab ozogamicin)	2-3
Lumoxiti (moxetumomab pasudotox-tdfk)	N/A

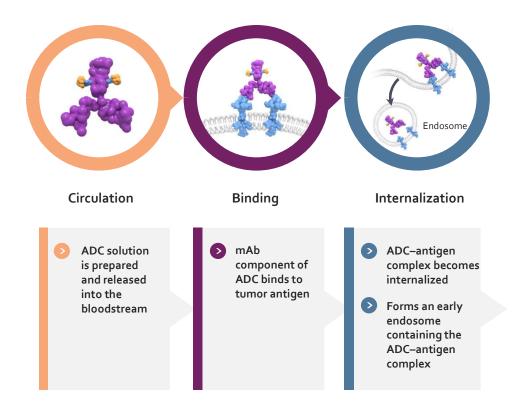

ADC Summit

1. Chau C, et al. Lancet. 2019;394(10200):793-804; 2. Beck A, et al. Nat Rev Drug Discov. 2017;16(5):315-337.

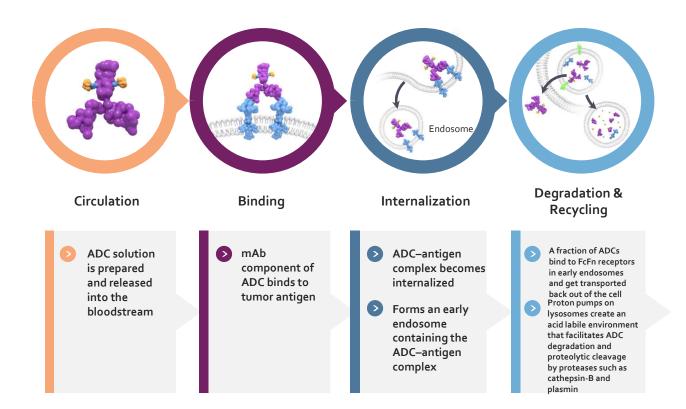


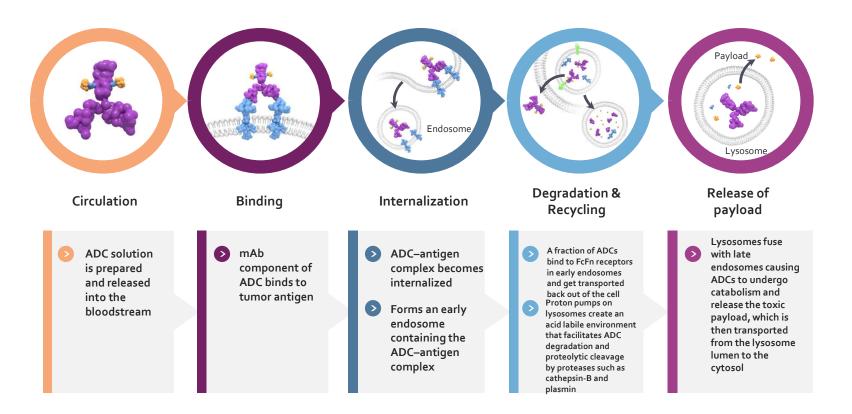
ADC Mechanism of Action

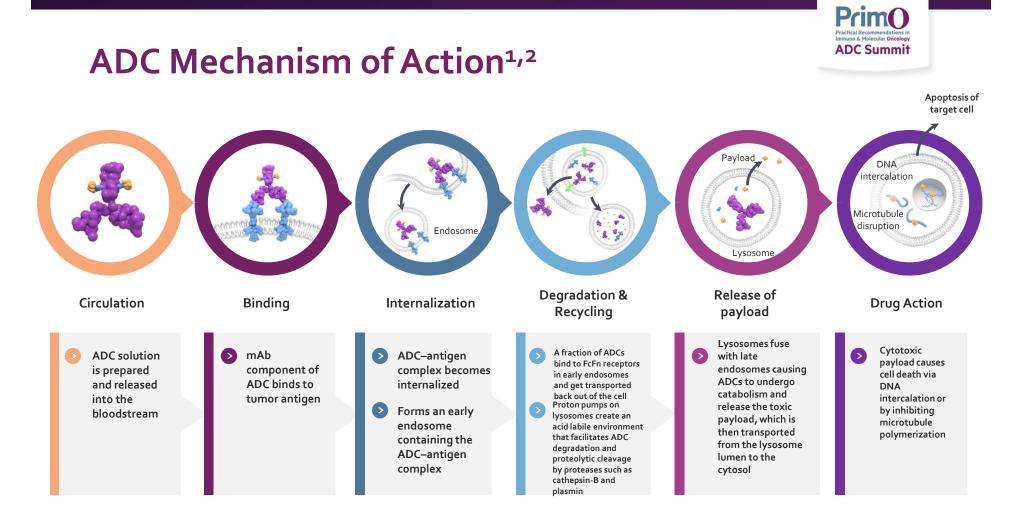




Circulation


ADC solution is prepared and released into the bloodstream





Mechanisms of ADC Resistance

ADC binding to target antigen

- Target downregulation
- Loss of antigen expression
- Mutated antigen affects target recognition

Payload release to the cytosol

- Loss of lysosomal transporter expression
- Overexpression of drug efflux transporters

Receptor-mediated ADC internalization

- Reduced cell-surface trafficking, causing insufficient ADC internalization
- Internalization and trafficking defects

Apoptosis of the target cell

• Loss of the bystander effect

Chau C et al. Lancet. 2019;394(10200):793-804.

Considerations for Treatment With ADCs^{1,2}

Efficacy does not always correlate with dose

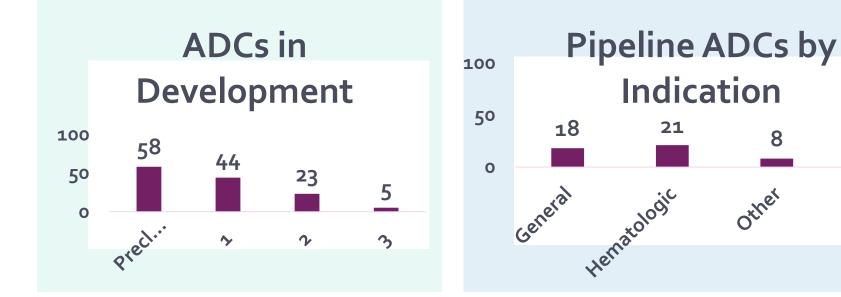
ADC efficacy may be affected by:

- Payload concentration threshold
- Antigen–antibody saturation (causing the ADC concentration to be higher in circulation than at the corresponding receptors)

Some antigens may shed from tumor cells and circulate, resulting in invalid antibody–antigen combinations

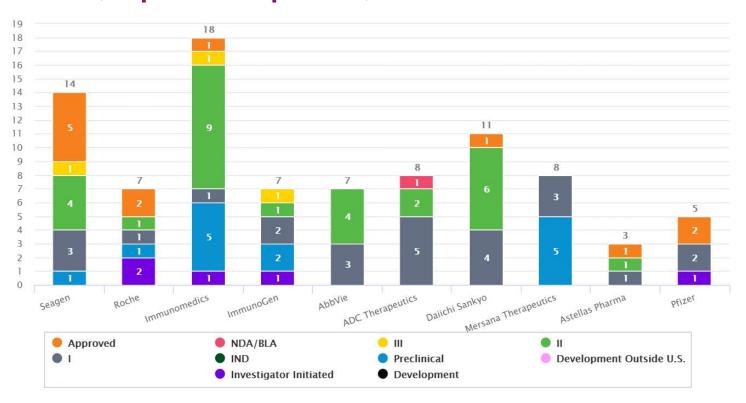
The relative lack of immunosuppressive side effects of many ADCs suggests that a potential clinical benefit of some ADCs may be the engagement of the immune system

ADCs in Clinical Development


ADCs in Solid Tumors: More to Come

Prim muno & Molecular Oncology **ADC Summit**

83


solid

8

Informa Business Intelligence, Inc., 2020.

Number of ADCs Approved and in Development by Phase (Top 10 Companies)

Prim

Practical Recommendations in Immuno & Molecular Oncology ADC Summit

Seagen; Seattle Genetics. Informa Business Intelligence, Inc., 2020

HER2 ADC Competitive Landscape

Company	Project (Payload)	Potential Indication	Pre-Clinical	Ph 1	Pivotal
Daiichi Sankyo Cancer Enterprise	DS-8201	Breast, Gastric, NSCLC, CRC	Ph 3, Ph 2, Ph 1		
Synthon	SYD985	Breast, Gastric	F	2h 3, Ph 1	
Bio-Thera	BA8001	Breast, Gastric		Ph 3	
Remegen, Ltd.	RC-48	Breast, Gastric, Bladder	Pł	12	, ,
Takeda Mersana	XMT-1522	Breast, Gastric, NSCLC	Ph 1		
Ambrx	ARX-788	Breast, Gastric	Phı		
Pfizer	PF-06804103	Breast, Gastric, NSCLC, GEJ	Phı		
Roche Genentech	DHES-0815A	Breast	Ph 1		
Alteogen	ALT-P7	Breast	Ph 1		
Klus Pharma	A166	Solid Tumor	Ph 1/2		

Price Practical Recommendations in Immuno & Molecular Oncology ADC Summit

GEJ, gastroesophageal junction. Tsurutani, J, 2020. Adcs - Targeting HER Family.

Key Takeaways

- ADCs represent a novel drug class that delivers highly potent "targeted chemotherapy" to the tumor site
- Majority of ADCs are currently FDA approved for hematologic malignancies; 3 are FDA approved in solid tumors (ie, breast cancer)
- ADCs are composed of an antibody, a linker, and a payload
 - Characteristics of each component contribute to efficacy and safety
- Many clinical studies with ADCs are ongoing, especially for solid tumors

Thank You!

Sara A. Hurvitz, MD, FACP

Professor of Medicine Director, Breast Cancer Clinical Trials Program, Division of Hematology-Oncology David Geffen School of Medicine, UCLA Medical Director, Clinical Research Unit, Jonsson Comprehensive Cancer Center Los Angeles, CA

Disclosures

<u>Contracted Research</u>: Ambrx, Amgen, Arvinas, Bayer, Daiichi-Sankyo, Dignitana, Genentech, GSK, Immunomedics, Lilly, Macrogenics, Novartis, OBI Pharma, Pfizer, Pieris, PUMA, Radius, Roche, Sanofi, Seattle Genetics

<u>*Travel:*</u> Eli Lilly and Company

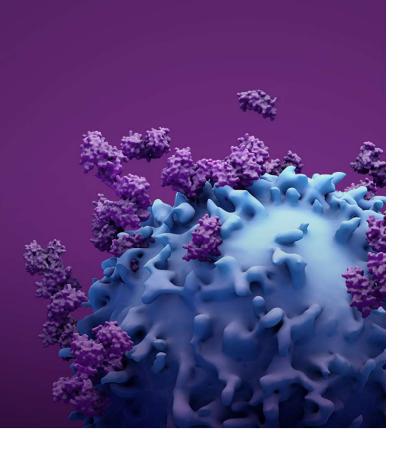
Stock options: NKMaX

William J. Gradishar, MD, FASCO, FACP

Betsy Bramsen Professor of Breast Oncology & Professor of Medicine Chief, Division of Hematology/Oncology Director, Maggie Daley Center for Women's Cancer Care Deputy Director, Clinical Network Robert H. Lurie Comprehensive Cancer Center Northwestern University Feinberg School of Medicine Chicago, IL

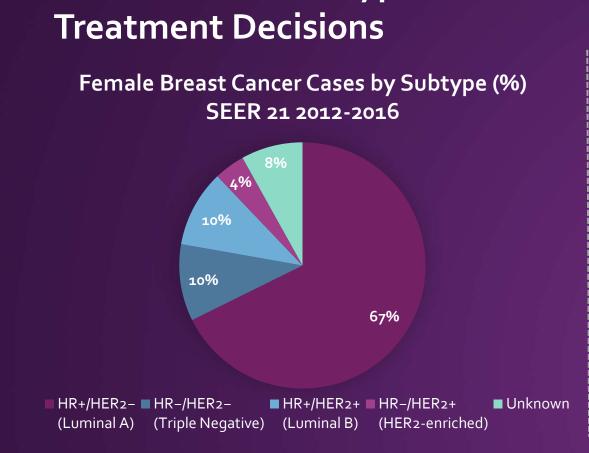
Disclosures

<u>Advisory Boards</u>: AstraZeneca Pharmaceuticals LP; Eli Lilly and Company; Novartis Pharmaceuticals Corp.; Genentech, Inc.; Seattle Genetics, Inc.; MacroGenics, Inc.; Puma Biotechnology, Inc.; Merck & Co., Inc.


Data Safety Monitoring Board: Genentech, Inc.; Seattle Genetics, Inc.

Antibody–Drug Conjugates: Practical Considerations and Applications in Clinical Use

Sara A. Hurvitz, MD, FACP Professor of Medicine David Geffen School of Medicine, UCLA Los Angeles, CA


William J. Gradishar, MD, FASCO, FACP Betsy Bramsen Professor of Breast Oncology & Professor of Medicine Northwestern University Feinberg School of Medicine Chicago, IL

Learning Objectives

Identify current thinking and rationale around patient selection and sequencing of ADCs in breast cancer

Breast Cancer Subtypes Guide

Rate of New Breast Cases per 100,000 Women, SEER 21 2012-2016

Subtype	New Cases
HR+/HER2-	85.8
HR-/HER2-	13.0
HR+/HER2+	12.9
HR-/HER2+	5.4
Unknown	10.4
Total	127.5

HER, human epidermal growth factor receptor; HR, hormone receptor. Cancer Stat Facts: Female Breast Cancer Subtypes. URL: https://seer.cancer.gov/statfacts/html/breast-subtypes.html.

ADCs in TNBC

1 ADC Currently Approved for TNBC¹

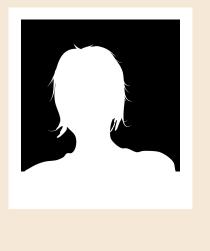
Sacituzumab govitecan (Trodelvy)

indicated for the treatment of adult patients with mTNBC who have received at least 2 prior therapies for metastatic disease. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

ADC Summit

1. TRODELVY (sacituzumab govitecan-hziy) [package insert]. Morris Plains, NJ: Immunomedics, Inc; 2020.

NCCN Guidelines—Systemic Therapy For Recurrent TNBC


SYSTEMIC THERAPY REGIMENS FOR RECURRENT OR STAGE IV (M1) DISEASE

HER2-Negative							
 Preferred Regimens: Anthracyclines: doxorubicine, liposomal doxorubicin Taxanes: paclitaxel Anti-metabolites: capecitabine, gemcitabine Microtubule inhibitors: vinorelbine, eribulin For germline BRCA1/2 mutations, see additional targeted therapy options Platinum (for TNBC and germline BRCA1/2 mutation): carboplatin, cisplatin For PD-1L-positive TNBC see 	 Other Recommended Regimens: Cyclophosphamide Docetaxel Albumin-bound paclitaxel Epirubicine Ixabepilone Sacituzumab govitecan-hziy (for TNBC) 	 Useful in Certain Circumstances: AC (doxorubicin/cyclophosphamide) ED (epirubicin/cyclophosphamide) CMF (cyclophosphamide/ methotrexate/uorouracil) Docetaxel/capecitabine GT (gemcitabine/paclitaxel) Gemcitabine/carboplatin Paclitaxel/becacizumab Carboplatin + paclitaxel or albumin- bound paclitaxel 					

BRCA, BReast CAncer gene; PD-L1, programmed death-ligand 1. NCCN, National Comprehensive Cancer Network.

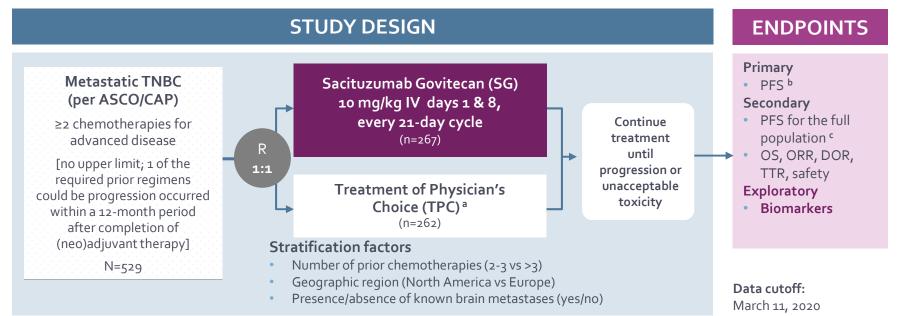
additional targeted therapy options

Patient Case - 50 Y/O BRCA negative woman

 Diagnosed with 3.3-cm high-grade TNBC left breast cancer cNo; received 6 cycles neoadjuvant TC with pCR Practical Recommendations in Immuno & Molecular Oncology ADC Summit

- 4 years later diagnosed with lung and bone metastases, ER/PR o, HER2 FISH neg. Pt wishes to avoid alopecia
- Received 1L capecitabine (4 mos), 2L line clinical trial of PI3Ki plus cisplatin (7 mos, intolerable AEs), 3L line clinical trial of atezolizumab/entinostat (2 mos, PD)
- She has an ECOG PS 1

What would you recommend for her as 4L therapy? (She had 2 lines of chemotherapy in the metastatic setting but is relatively chemotherapy naïve)


Patient Case - 50 Y/O BRCA negative woman: UPDATE

- Diagnosed with 3.3-cm high-grade TNBC left breast cancer cNo; received 6 cycles neoadjuvant TC with pCR
- 4 years later diagnosed with lung and bone metastases, ER/PR o, HER2 FISH neg. Pt wishes to avoid alopecia
- Received 1L capecitabine (4 mos), 2L clinical trial of PI3Ki plus cisplatin (7 mos, intolerable AEs), 3L clinical trial of atezolizumab/ entinostat (2 mos, PD)
- She enters ASCENT trial and receives sacituzumab govitecan. She develops grade 3 neutropenia after cycle 1

ASCENT: A Phase 3 Confirmatory Study of Sacituzumab Govitecan in Refractory/Relapsed mTNBC

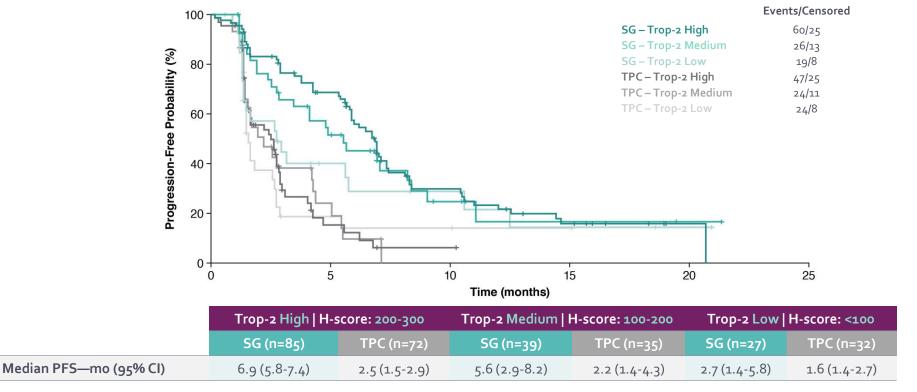
SCENT

ADC Summit

NCT02574455

We report the exploratory biomarker analysis in the brain metastases-negative (Brain Mets-Negative) population

^a TPC: eribulin, vinorelbine, gemcitabine, or capecitabine. ^b PFS measured by an independent, centralized, and blinded group of radiology experts who assessed tumor response using RECIST 1.1 criteria in patients without brain metastasis. ^c The full population includes all randomized patients (with and without brain metastases). Baseline brain MRI only required for patients with known brain metastasis. ASCO/CAP, American Society of Clinical Oncology/College of American Pathologists; DOR, duration of response; DSMC, Data Safety Monitoring Committee; IV, intravenous; mTNBC, metastatic triple-negative breast cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; R, randomization; RECIST, Response Evaluation Criteria in Solid Tumors; TTR, time to response. National Institutes of Health. https://clinicaltrials.gov/ct2/show/NCTo2574455.

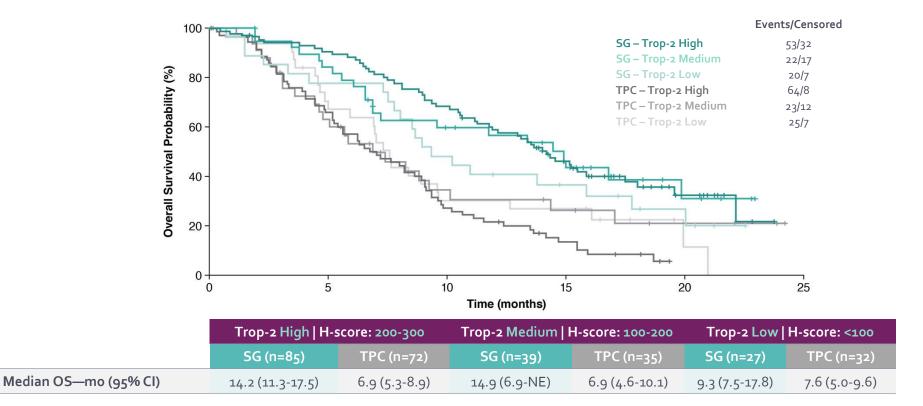

Demographics (Brain Mets-Negative)

	SG (n=235)	TPC (n=233)			SG (n=235)
Female—no. (%)	233 (99)	233 (100)		Original diagnosis of TNBC ^a	Original diagnosis of TNBC ^a
Median age—yr (range)	54 (29-82)	53 (27-81)		Yes	Yes 165 (70)
Race or ethnic group—no. (%)				No	No 70 (30)
White	188 (80)	181 (78)			
Black	28 (12)	28 (12)		Previous anticancer regimens ^b — median (range)	Previous anticancer regimens ^b — median (range) 4 (2-17)
Asian	9 (4)	9 (4)		Most common prior chemotherapy—no. (%)	Most common prior chemotherapy—no. (%)
Other or not specified	10(4)	15(6)		Taxane ^c	Taxane ^c 235 (100)
ECOG PS—no. (%)				Cyclophosphamide	Cyclophosphamide 192 (82)
0	108 (46)	98 (42)		Carboplatin	Carboplatin 147 (63)
1	127 (54)	135 (58)		Capecitabine	Capecitabine 147 (63)
BRCA1/2 mutational status—no. (%)	149 (63)	143 (61)		Previous PARP inhibitor—no. (%)	
Positive	16 (7)	18(8)	l	Previous use of checkpoint inhibitors—no. (%)	
Negative	133 (57)	125 (54)			
Trop-2 expression—no. (%)	151(64)	139 (60)		Most common sites of disease ^d —no. (%)	Most common sites of disease ^d —no. (%)
(High) H-score 200-300	85 (56)	72 (52)		Lung only	Lung only 108 (46)
(Medium) H-score 100-200	39 (26)	35 (25)		Liver	Liver 98 (42)
(Low) H-score <100	27 (18)	32 (23)		Bone	Bone 48 (20)

Assessed in the brain metastases-negative population. ^a Patients in study either had TNBC at initial diagnosis or had hormone receptor-positive disease that converted to hormone-negative at time of study entry. ^b Anticancer regimens refer to any treatment regimen that was used to treat breast cancer in any setting. ^c Includes paclitaxel, paclitaxel albumin, and docetaxel. ^d Based on independent central review of target and nontarget lesions at baseline.

ECOG PS, Eastern Cooperative Oncology Group performance status; PARP, poly-ADP ribose polymerase;

Progression-Free Survival by TROP-2 Expression


Prim(

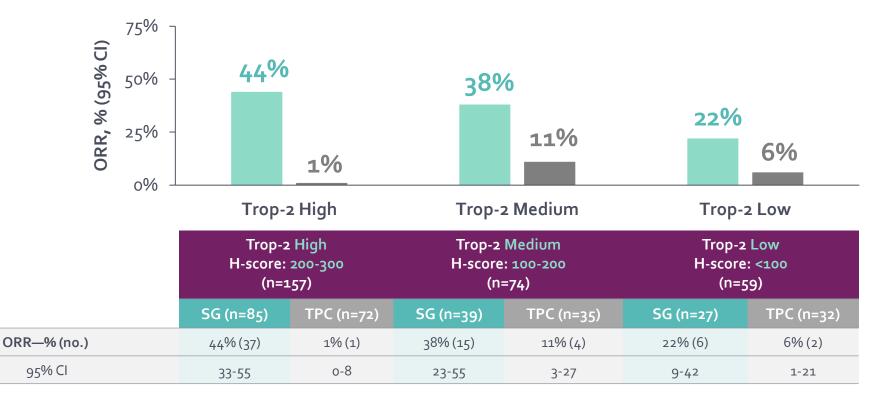
ADC Summit

ASCENT

Assessed in brain metastases-negative population. Trop-2 expression determined in archival samples by validated immunohistochemistry assay and H-scoring.

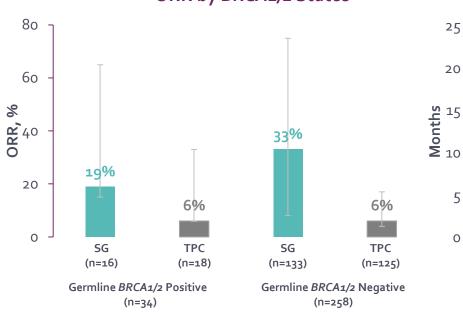
Overall Survival by TROP-2 Expression

Prim


ADC Summit

SCENT

Assessed in brain metastases-negative population. Trop-2 expression determined in archival samples by validated immunohistochemistry assay and H-scoring.

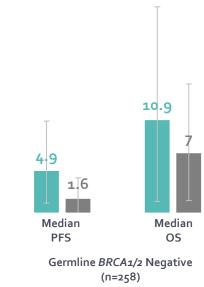

ORR by TROP-2 Expression

Assessed in the brain metastases-negative population. ORR and PFS are assessed by BICR. Trop-2 expression determined in archival samples by validated immunohistochemistry assay and H-scoring. BICR, blind independent central review.

Efficacy Summary by Germline BRCA1/2 Status

ORR by BRCA1/2 Status

25


20

5

0

PFS and OS by BRCA1/2 Status

TPC SG

Assessed in the brain metastases-negative population. ORR and PFS are assessed by BICR.

Breast Cancer

Sacituzumab Govitecan

ASCENT: Results Confirm Sacituzumab Govitecan Should Be Considered as a New SOC in Pts With Pretreated mTNBC

ANTITUMOR ACTIVITY

BCIR Analysis	SG (n=235)	TPC (n=233)		SG	ТРС
No. of events	166	150		(n=235)	(n=233)
mPFS – mo (95% CI)	5.6 (4.3-6.3)	1.7 (1.5-2.6)			
HR (95% CI), <i>P</i> value	0.41 (0.32-0.52) <i>P</i> < 0.0001		ORR – no. (%)	82 (35)	11 (%)
OS	SG (n=235)	SG (n=235) TPC (n=233)		< 0.0	0001
No. of events	155	185	CR	10(4)	2 (1)
		(-(-0))	CK	10(4)	2 (1)
mOS – mo (95% Cl)	12.1 (10.7-14.0)	6.7 (5.8-7.7)			

SAFETY RESULTS

ADC Summit

- Key gr ≥3 TRAEs (SG): neutropenia (51%), diarrhea (10%), leukopenia (10%) anemia (8%), and febrile neutropenia (6%)
- No severe cardiovascular toxicity, no gr >2 neuropathy or gr >3 ILD with SG
- No treatment-related deaths with SG
- AEs leading to treatment discontinuations were low for SG (4.7%)

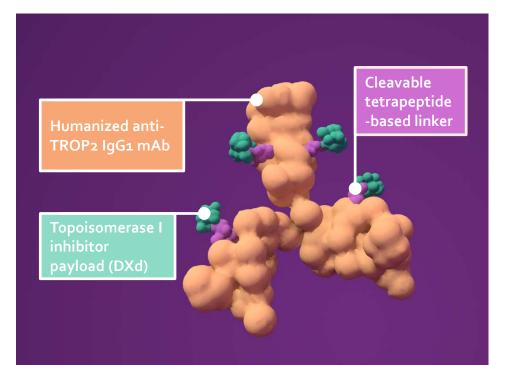
mOS, median overall survival; SG, sacituzumab govitecan; TPC, treatment of physician's choice.

Bardia A. ASCENT: A randomized phase III study of sacituzumab govitecan (SG) vs treatment of physician's choice (TPC) in patients (pts) with previously treated metastatic triple-negative breast cancer (mTNBC). Presented at: European Society for Medical Oncology Virtual 2020 Scientific Sessions. September 19, 2020. https://oncologypro.esmo.org/meeting-resources/esmo-virtual-congress-2020/ascent-a-randomized-phase-iii-study-of-sacituzumab-govitecan-sg-vs-treatment-of-physician-s-choice-tpc-in-patients-pts-with-previously-treat.

How do you manage the neutropenia associated with sacituzumab govitecan? Do you use growth factors up front or only after neutropenic event?

How do you time GCSF given d1/8 dosing? Are there other toxicities that are particularly important to discuss with patients prior to starting therapy?

She has a partial response lasting 14 months before PD in the lungs.


What therapy would you recommend next? Would you recommend next generation sequencing of the tumor?

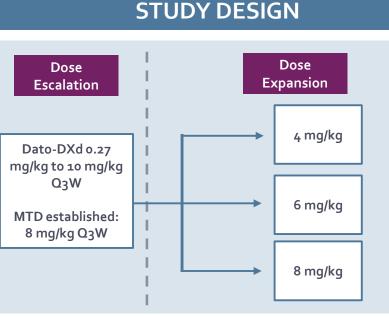
Patient Case - 50 Y/O BRCA negative woman: UPDATE2

- T2Nohigh-grade TNBC left breast cancer, 6 cy TC→pCR
- 4 years later, lung and bone metastases, ER/PR o, HER2 FISH neg
- Received 1L capecitabine (4 mos), 2L clinical trial of PI3Ki plus cisplatin (7 mos, intolerable AEs), 3L clinical trial of atezolizumab/entinostat (2 mos, PD)
- 4L Sacituzumab (14 mos PR)
- NGS: copy number loss of BRCA1. Enters study of niraparib/temozolomide. 5 mo SD
- Trial of CDK2/4/6 inhibitor: SD 2 mos
- Trial of DS1062a (anti-TROP2 ADC, deruxtecan payload). PR achieved after 2 cycles

- TROP2-targeting IgG1 ADC
- Cleavable tetrapeptide-based linker
- Topoisomerase I inhibitor payload (DXd)
- Drug-to-antibody ratio of 4
- DS-1062 selectively binds to the TROP2 receptor on the surface of a tumor cell
- After linker cleavage, DS-1062 induces tumor cells to undergo apoptosis through DNA damage via released DXd

Datopotamab Deruxtecan (Dato-DXd; DS-1062)

IgG1, immunoglobulin G1;TROP-2, trophoblast cell-surface antigen 2. Spira A, et al. Datopotamab Deruxtecan (Dato-DXd; DS-1062), a TROP2 ADC, in Patients With Advanced NSCLC: Updated Results of TROPION-PanTumor01 Phase 1 Study. Oral Presentation at: World Conference on Lung Cancer Singapore; January, 2021


First-in-human Study of DS-1062a for Advanced Solid Tumors

ENDPOINTS

PATIENTS

- Relapsed/refractory advanced/metastatic TNBC
- Unselected for TROP2 expression
- Aged ≥ 18 (US) or ≥ 20 (Japan) years
- ECOG PS 0-1
- Measurable disease per RECIST v1.1
- Stable, treated brain metastases allowed

TNBC cohort 6 mg/kg Q₃w is enrolling

1 ⁰
Establish MTDSafetyTolerability
Select 2°
• Cmax • Tmax

- AUC of DS-1062
- Ctrough

AUC, area under curve; Cmax, maximum concentration; Tmax, time to maximum. Spira A, *et al.* WCLC 2020.

ADCs in HER2+ BC

2 ADCs Currently Approved for HER2+ BC^{1,2}

7	Гrastuzumab emtansine (T-DM1; Kadcyla)	 Indicated, as a single agent, for the treatment of patients with HER2-positive, metastatic breast cancer who previously received trastuzumab and a taxane, separately or in combination. Patients should have either: Received prior therapy for metastatic disease, or Developed disease recurrence during or within 6 months of completing adjuvant therapy. Indicated for the adjuvant treatment of patients with HER2-positive early breast cancer who have residual invasive disease after neoadjuvant taxane and trastuzumab-based treatment.
	Trastuzumab deruxtecan (DS8201a; T-DXd; Enhertu)	Indicated for the treatment of adult patients with unresectable or metastatic HER2-positive breast cancer who have received 2 or more prior anti-HER2-based regimens in the metastatic setting. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial.

mBC, metastatic breast cancer; mTNBC, metastatic triple-negative breast cancer; TROP-2, trophoblast cell-surface antigen 2.

^{1.} KADCYLA (trastuzumab emtansine) [package insert]. San Francisco, CA: Genentech, Inc; 2019; 2. ENHERTU (trastuzumab deruxtecan) [package insert]. Basking Ridge, NJ: Daiichi Sankyo, Inc; 2019.

ADCs in HER2+ BC: NCCN Guidelines

PREOPERATIVE/ADJUVANT THERAPY REGIMENS

HER2-Positive

Preferred Regimens:

- Paclitaxel + trastuzumab
- TCH
- TCHP
- If no residual disease after preoperative therapy or no preoperative therapy: complete ≤ 1 year of HER2-targeted therapy with trastuzumab ± pertuzumab
- If residual disease after preoperative therapy: T-DM1 (cat 1) alone. If T-DM1 is discontinued for toxicity, then trastuzumab (cat 1) ± pertuzumab to complete 1 year of therapy

Useful in Certain Circumstances:

- Docetaxel + cyclophosphamide + trastuzumab
- AC followed by T + trastuzumab
 AC followed by T + trastuzumab + pertuzumab

Other recommended Regimens:

- AC followed by docetaxel + trastuzumab
- AC followed by docetaxel + trastuzumab + pertuzumab

AC, doxorubicin/cyclophosphamide; TCH, docetaxel/carboplatin/trastuzumab; TCHP, docetaxel/carboplatin/trastuzumab/pertuzumab; T, paclitaxel. NCCN, National Comprehensive Cancer Network.

ADCs in HER2+ BC: NCCN Guidelines (Continued)

SYSTEMIC TREATMENT OF RECURRENT OR STAGE IV DISEASE: ER- AND/OR PR-NEGATIVE; HER2-POSITIVE

Systemic therapy + HER2-targeted therapy with:

- Pertuzumab + trastuzumab + taxane
- T-DM1
- T-DXd
- Trastuzumab + chemotherapy
- Other HER2-targeted therapies

Most patients will be candidates for multiple lines of systemic therapy to palliate advanced BC. At each reassessment, clinicians should assess value of ongoing treatment, the risks and benefits of an additional line of systemic therapy, patient performance status, and patient preferences through a shared-decision making process

ADC Summit

SYSTEMIC TREATMENT OF RECURRENT OR STAGE IV DISEASE: ER- AND/OR PR-POSITIVE; HER2-POSITIVE

Systemic therapy + HER2-targeted therapy with:

- Pertuzumab + trastuzumab + taxane
- T-DM1
- T-DXd
- Trastuzumab + chemotherapy
- Endocrine therapy +/- HER2-targeted therapy (if premenopausal, consider ovarian ablation or suppression)
- Other HER2-targeted therapies

Continue therapy until progression or unacceptable toxicity

NCCN, National Comprehensive Cancer Network.

Efficacy Outcomes in Patients With Advanced/Metastatic HER2+ BC

	N + CAPE ^{1,a} DS-8201 ² T-DM1 ^{3,a} NALA DESTINY- EMILIA Breasto1		Tucatinib + H + CAPE ^{4,b} HER2CLIMB	
Study type	Ph 3	Ph 2	Ph 3	Ph 2
Total population (E vs C)	621 (307 vs 314)	184	991 (495 vs 496)	612 (410 vs 202)
ORR (% [95% CI]); E vs C	33 VS 27 P = 0.1201	60.9 [53.4-68.0]	43.6 [38.6-48.6] vs 30.8 [26.3- 35.7] <i>P</i> < 0.001	40.6 [35.3-46.0] vs 22.8 [16.7-29.8] <i>P</i> < 0.001
CBR (% [95% Cl]); E vs C	45 vs 36 <i>P</i> = 0.0328	76.1 [69.3-82.1]		
mPFS (mo [95% Cl]); E vs C	8.8 vs 6.6 ^c <i>P</i> = 0.0003	16.4 [12.7-NR]	9.6 vs 6.4 HR 0.65 [0.55-0.77], <i>P</i> < 0.001	7.8 [7.5-9.6] vs 5.6 [4.2-7.1] ^d HR 0.54 [0.42-0.71], <i>P</i> < 0.001
mOS (mo [95% Cl]); E vs C	24.0 vs 22.2 HR 0.88 [0.72-1.07], <i>P</i> = 0.2086	NR	30.9 vs 25.1 HR 0.68 [0.55-0.85], <i>P</i> < 0.001	21.9 [18.3-31.0] vs 17.4 [13.6-19.9] HR 0.66 [0.50-0.88], <i>P</i> = 0.005
mDOR (mo [95% Cl]); E vs C	8.5 vs 5.6 HR 0.50 [0.33-0.74], <i>P</i> = 0.0004	14.8 [13.8-16.9]	12.6 [8.4-20.8] vs 6.5 [5.5-7.2]	

C, control; CAPE, capecitabine; CBR, clinical benefit rate; E, experimental; H, trastuzumab; mDOR, median duration of response; mo, month; mOS, median overall survival; mPFS, median progression-free survival; N, neratinib; NR, not reached; ORR, objective response rate; P, phase.

Note: Direct cross-study comparisons must be interpreted with caution.

^aControl arm: lapatinib + CAPE.

^bControl arm: H + CAPE.

°Prespecified restricted means analysis.

^dmPFS in the primary endpoint population (n=480).

1. Saura C, et al. J Clin Oncol. 2020;38(27):3138-3149. 2. Modi S, et al. N Engl J Med. 2019. 3. Verma S, et al. N Engl J Med. 2012;367(19):1783-1791. 4. Murthy RK, et al. N Engl J Med. 2019.

Efficacy Outcomes in Patients With HER2+ BC With Brain Metastases

	N + CAPE ^{1,a} TBCRC 022	N + CAPE ² NALA		-		DS-8201 ³ DESTINY-Breasto1	T-DM1⁴	T-DM1⁵ EMILIA	Tucatinib + H HER2CLI	
		N + CAPE	L + CAPE				Tuc + H + CAPE	H + CAPE		
Study type	P2		P ₃	P2	Retrospective	Retrospective	P2			
Patients with BM	37	19	13	24	87	45	198	93		
Brain/CNS ORR (%) [95% Cl]	49 [32-66]	26.3	15.4		24.5		47	20		
mPFS (mo) [95% Cl]	5.5			18.1 [6.7-18.1]	7.0 [5.4-8.6]	5.9	9.9 ^b	4.2		
mOS (mo)	13.3					26.8				
CNS incidence (%)		22.8 ^{7,C}	29.2 ^{7,C}			2 ^d ; 22.2 ^e				

BM, brain metastases; CNS, central nervous system; H, trastuzumab; L, lapatinib; mets, metastases; N, neratinib; Tuc, tucatinib.

Note: Direct cross-study comparisons must be interpreted with caution.

^aEfficacy from cohort 3A (lapatinib naïve).

^bHR=0.32 [95% Cl, 0.22-0.48]; P < 0.0001.

Patient population N + CAPE (N=307) and L + CAPE (N=314); statistically significant reduction (P = 0.043).

 $^{d}\mbox{In patients}$ with no CNS mets at baseline (N=450).

^eIn patients with stable CNS mets at baseline.

1. Freedman RA, et al. J Clin Oncol. 2019;37(13):1081-1089. 2. Awada A, et al. Poster presented at: San Antonio Breast Cancer Symposium. December 10-14, 2019; San Antonio, TX. Poster P2-20-01. 3. Modi S, et al. N Engl J Med. 2019. 4. Fabi A, et al. Breast. 2018;41:137-143. 5. Krop IE, et al. Ann Oncol. 2015;26(1):113-119. 6. Presented at: ASCO 2020. 7. Saura C, et al. J Clin Oncol. 2019;37(15_suppl):1002-1002.

Safety Results With HER2-Targeting ADCs

T-DXd¹

The most common gr 3 or 4 TEAEs included decreased neutrophil

count, nausea, and anemia								
Patients who received T-DXd (N = 184)								
TEAE (≥ 15%), n (%) All Grades Grade 3 Grade 4								
Patients with any TEAE	183 (99.5)	89 (48.4)	7 (3.8)					
Nausea	143 (77.7)	14 (7.6)	0					
Fatigue	91 (49.5)	11 (6.0)	0					
Alopecia	89 (48.4)	1(0.5)	0					
Vomiting	84 (45.7)	8 (4.3)	0					
Constipation	66 (35.9)	1 (0.5)	0					
Neutropenia	64 (34.8)	36 (19.6)	2 (1.1)					
Decreased appetite	57 (31.0)	3 (1.6)	0					
Anemia	55 (29.9)	15 (8.2)	1 (0.5)					
Diarrhea	54 (29.3)	5 (2.7)	0					
Decreased WBC count	39 (21.2)	11 (6.0)	1 (0.5)					
Thrombocytopenia	39 (21.2)	7 (3.8)	1 (0.5)					
Headache	36 (19.6)	0	0					
Cough	35 (19.0)	0	0					
Abdominal pain	31 (16.8)	2 (1.1)	0					

The most commonly reported gr 3 or 4 events were thrombocytopenia (12.9%) and elevated serum concentrations of AST (4.3%) and ALT (2.9%)

T-DM1²

Practical Recommendations in Immuno & Molecular Oncology ADC Summit

Patients who received T-DM1 (N = 490)								
TEAE (≥ 2%), n (%) All Grades Grade ≥3								
Patients with any TEAE	470 (95.9)	200 (40.8)						
Diarrhea	114 (23.3)	8 (1.6)						
Palmar-plantar erythrodysesthesia	6 (1.2)	0						
Vomiting	93 (19.0)	4 (0.8)						
Neutropenia	29 (5.9)	10 (2.0)						
Hypokalemia	42 (8.6)	11 (2.2)						
Fatigue	172 (35.1)	12 (2.4)						
Nausea	192 (39.2)	4 (0.8)						
Mucosal inflammation	33 (6.7)	1(0.2)						
Anemia	51 (10.4)	13 (2.7)						
Elevated ALT	83 (16.9)	14 (2.9)						
Elevated AST	110 (22.4)	21 (4.3)						
Thrombocytopenia	137 (28.0)	63 (12.9)						

ALT, alanine aminotransferase; AST, aspartate aminotransferase; TEAE, treatment-related adverse events; WBC, white blood cell. 1. Modi S, et al. N Engl J Med. 2019;382(7):610-621; 2. Verma S et al. N Engl J Med. 2012. 367:1783-1791.

AEs of Interest With T-DXd: ILD¹⁻³

- Identified across clinical development programs with T-DXd
- Protocol recommendation: monitor for symptoms. Hold T-DXd and start steroids as soon as ILD is suspected

	N	Grade 1 n (%)	Grade 2 n (%)	Grade 3 n (%)	Grade 4 n (%)	Grade 5 n (%)	Any grade/total
DESTINY-Breasto1	184	5 (2.7)	15 (8.2)	1 (0.5)	0	4 (2.2)	25 (13.6)
DESTINY-CRC01	78	0	2 (2.6)	1 (1.3)	0	2 (2.6)	5 (6.4)
DESTINY-Lungo1	42	0	5 (11.9)	0	0	0	5 (11.9)

1. Modi S. Poster presented at the San Antonio Breast Cancer Symposium; December 4-7, 2018; San Antonio, TX [poster P6-17-02]; 2. Smit EF et al. Trastuzumab Deruxtecan (T-DXd; DS-8201) in patients with HER2-mutated metastatic non-small cell lung cancer: interim results of DESTINY-Lung01. Presented at: American Society for Clinical Oncology 2020 Virtual Scientific Program; May 29 – 31. Accessed November 6, 2020. https://meetinglibrary.asco.org/session/12667; 3. Siena S et al. A phase II, multicenter, open-label study of trastuzumab deruxtecan (T-DXd; DS-8201) in patients (pts) with HER2-expressing metastatic colorectal cancer (mCRC): DESTINY-CRC01. Presented at: American Society of Clinical Oncology 2020 Virtual Scientific Sessions; May 29 – 31. Accessed November 6, 2020. https://meetinglibrary.asco.org/record/185482/abstract;

Patient Case - 59 Y/O female presents with progressive HER2+ MBC

- Dx with Stage II, ER+/HER+ Left-sided IDC 6 years earlier
- After lumpectomy and SLN (1.5 cm primary and 2 positive axillary nodes) adjuvant therapy with TCH x 6 followed by completion of 1 year of trastuzumab
- RT completed and an aromatase inhibitor was initiated
- Just after completing 5 years of AI therapy, she presented with bone pain and some respiratory sx. Evaluation revealed bone, liver and lung metastases and liver biopsy confirmed HER2+, but now ER poor
- Treatment with THP (paclitaxel) was started, and after 6 cycles there was almost complete resolution of lung mets and marked decrease liver mets; bone was stable.
 HP was continued for another 9 months at which time there was a slight increase in liver mets

- Add paclitaxel back to HP
- D/c HP and start TDM-1
- D/c HP and start T-DXd
- D/c HP and start tucatinib, capecitabine, trastuzumab

ADC Summit

• Would you also recommend endocrine therapy?

Would you image the brain in the absence of symptoms? Would the presence of brain mets change your rec?

Patient Case - 42 Y/O premenopausal woman with a 3.5 cm self-detected right breast mass

- PE confirms the mass, and an axillary lymph node is detected. A biopsy of both the mass and node confirm HER2 +/ER-/PR- disease
- The patient starts on TCHP preoperatively with an excellent clinical and imaging response
- Lumpectomy reveals 8 mm residual disease and no positive nodes. Residual disease remains HER2-positive
- TDM-1 was initiated, and the full course was completed
- 1.5 years after completion of all therapy new symptoms develop and liver transaminases noted to be slightly above normal. CT confirms several 1 cm liver mets. Biopsy c/w HER2 + recurrent BC

Primo Practical Recommendations In Immuno & Molecular Oncology ADC Summit

Patient Case - 42 Y/O Woman

- THP
- T-DXd
- Tucatinib, capecitabine, trastuzumab
- Lapatinib /capecitabine

Thank You

Join Us Again!

The Emerging Role of ADCs in Lung, Gastrointestinal, and Colorectal Cancers

Wednesday, Feb 17, 2021 6:00-7:30 PM EST

Follow us on social @CancerExpertNow 🕥 🙆 🚹 💼

Presentation Breakdown

- Spiro: Slides 1-4
- Sanjiv: Slides 5-8, 37-38, 75-76
- Daver: Slides 9-36
- Hurvitz: Slides 39-60, 69-75
- Gradishar: Slides 45-47, 55-58, 61-75

